Skip to main content
Log in

Perturbation theory of relativistic corrections

1. The non-relativistic limit of the Dirac equation and a direct perturbation expansion

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

After a discussion of the problems associated with the non-relativistic limit of the Dirac equation and of the expansion of the exact eigenvalues and eigenfunctions of the H atom in powers ofc −2 the traditional approaches for a perturbation theory of relativistic effects are critically reviewed. Then a direct perturbation theory is presented, that is characterized by a change of the metric in 4-component spinor space such that the Lévy-Leblond equation appears as the straightforward non-relativistic limit of the Dirac equation. The various orders in perturbation theory of the energy and the wave function are derived first in a direct way, then in a resolvent formalism. The formulas are very compact and easily generalizeable to arbitrary order. All integrals that arise to any order exist, and no controlled cancellation of divergent terms (as in other approaches) is necessary. In the same philosophy an iterative approach towards the solution of the Dirac equation is derived, in which the solution of the Schrödinger equation is the first iteration step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dirac, P.A.M.: Proc. R. Soc. (London) A117, 610 (1928); A118, 351 (1928)

    Google Scholar 

  2. Darwin, G.G.: Proc. R. Soc. A118, 654 (1928); A120, 621, 631 (1928)

    Google Scholar 

  3. Sommerfeld, A., Maue, A.W.: Ann. Phys. (Leipzig)22, 629 (1935)

    Google Scholar 

  4. Sewell, G.L.: Proc. Cambr. Phil. Soc.45, 631 (1949)

    Google Scholar 

  5. Foldy, L.L., Wouthuysen, S.A.: Phys. Rev.78, 29 (1950)

    Google Scholar 

  6. Sucher, J.: Phys. Rev.103, 468 (1956)

    Google Scholar 

  7. Ma, S.T.: Nucl. Phys.2, 347 (1956)

    Google Scholar 

  8. Pauli, W.: In: Handbuch der Physik, Vol. V1, p. 137–160. Berlin, Göttingen, Heidelberg: Springer 1958

    Google Scholar 

  9. Titchmarsh, E.C.: Proc. Roy. Soc. A266, 33 (1962)

    Google Scholar 

  10. Stone, A.P.: Proc. Phys. Soc.77, 786 (1961)

    Google Scholar 

  11. Stone, A.P.: Proc. Phys. Soc.81, 868 (1963)

    Google Scholar 

  12. Lévy-Leblond, J.-M.: Comm. Math. Phys.6, 286 (1967)

    Google Scholar 

  13. Lévy-Leblond, J.-M.: Ann. Phys. (NY)57, 481 (1970)

    Google Scholar 

  14. Veselić, K.: Comm. Math. Phys.22, 27 (1971)

    Google Scholar 

  15. Hunizker, W.: Comm. Math. Phys.40, 215 (1975)

    Google Scholar 

  16. Roux, J.F., Van Loc, P.: Nuovo Cimento29, 225 (1975)

    Google Scholar 

  17. Moore, R.A.: Can. J. Phys.53, 1240 (1975)

    Google Scholar 

  18. Moore, R.A., Lee, S.: Can. J. Phys.59, 614 (1981)

    Google Scholar 

  19. Barut, A.O.: J. Phys. B8, L 205 (1975)

  20. Osche, G.R.: Phys. Rev. D15, 2181 (1977)

    Google Scholar 

  21. Feneuille, S., Luc-Koenig, E.: Comm. At. Mol. Phys.6, 151 (1977)

    Google Scholar 

  22. Schoene, A.Y.: J. Math. Ann. Appl.71, 36 (1979)

    Google Scholar 

  23. Potvin, J.: J. Phys. A14, 1117 (1981)

    Google Scholar 

  24. Morrison, J.D., Moss, R.E.: Mol. Phys.41, 491 (1980)

    Google Scholar 

  25. Hostler, L.C.: J. Math. Phys.24, 2366 (1983)

    Google Scholar 

  26. Ketley, E.J., Moss, R.E.: Mol. Phys.48, 1131 (1983)

    Google Scholar 

  27. Ketley, E.J., Moss, R.E.: Mol. Phys.49, 1289 (1983)

    Google Scholar 

  28. Yamada, O.: Proc. Jpn. Acad. Sci.59A, 71 (1983)

    Google Scholar 

  29. Gesztesy, S., Grosse, H., Thaller, B.: Phys. Letters116B, 155 (1982)

    Google Scholar 

  30. Gesztesy, S., Thaller, B., Grosse, H.: Phys. Rev. Lett.50, 625 (1983)

    Google Scholar 

  31. Gesztesy, S., Grosse, H., Thaller, B.: Ann. Inst. Henri Poincaré40, 159 (1984)

    Google Scholar 

  32. Gesztesy, S., Grosse, H., Thaller, B.: Adv. Appl. Math.6, 159 (1985)

    Google Scholar 

  33. Rutkowski, A.: J. Phys. B19, 149 (1986)

    Google Scholar 

  34. Rutkowski, A.: J. Phys. B19, 3431 (1986)

    Google Scholar 

  35. Rutkowski, A.: J. Phys. B19, 3443 (1986)

    Google Scholar 

  36. Rutkowski, A., Rutkowska, D.: Phys. Scr.36, 397 (1987)

    Google Scholar 

  37. Chang, Ch., Pelissier, M., Durand, Ph.: Phys. Scr.34, 394 (1986)

    Google Scholar 

  38. Farazdel, A., Smith, V.H. Jr.: Int. J. Quant. Chem.29, 311 (1986)

    Google Scholar 

  39. See e.g. Desclaux, J.P.: At. Data Nucl. Data Tables12, 311 (1973)

    Google Scholar 

  40. The switch from a point nucleus to an extended one (or vice versa) changes the behaviour of the wave function for very smallr drastically (see e.g. [31]), such that it is not so obvious that a point nucleus is a good approximation to the real physical situation

  41. Kutzelnigg, W.: In: Aspects of many-body effects in molecules and extended systems. Mukherjee, D. (ed.), Lecture Notes in Chemistry, Vol. 50. Berlin, Heidelberg

  42. Huzinaga, S., Arnau, C.: Mol. Phys.20, 895 (1971)

    Google Scholar 

  43. Chandra, P., Buenker, R.J.: J. Chem. Phys.79, 358 (1983)

    Google Scholar 

  44. Buenker, R.J., Chandra, P., Hess, B.A.: J. Chem. Phys.84, 1 (1984)

    Google Scholar 

  45. Buenker, R.J., Hess, B.A., Chandra, P.: J. Chem. Phys.80, 6330 (1984)

    Google Scholar 

  46. Ahlrichs, R.: Theoret. Chim. Acta41, 7 (1976)

    Google Scholar 

  47. Löwdin, P.O.: J. Mol. Spectr.14, 131 (1964)

    Google Scholar 

  48. Blinder, S.M.,: J. Mol. Spectr.5, 17 (1960); Adv. Quant. Chem.2, 47 (1965)

    Google Scholar 

  49. Harriman, J.E.: Theoretical foundations of electron spin resonance. New York: Academic Press 1978

    Google Scholar 

  50. Feshbach, H.: Ann. Phys. (NY)5, 357 (1958)

    Google Scholar 

  51. Löwdin, P.O.: J. Math. Phys.3, 969 (1962)

    Google Scholar 

  52. Kutzelnigg, W.: Theor. Chim. Acta73, 173 (1988)

    Google Scholar 

  53. Pick, S.: Theor. Chim. Acta56, 307 (1980)

    Google Scholar 

  54. Rose, E.M.: Relativistic electron theory. New York: Wiley 1961

    Google Scholar 

  55. Schwarz, W.H.E., Wallmeier, H.: Mol. Phys.46, 1045 (1982)

    Google Scholar 

  56. Kutzelnigg, W.: Int. J. Quantum Chem.25, 107 (1984)

    Google Scholar 

  57. Douglas, M., Kroll, N.M.: Ann. Phys.82, 89 (1974)

    Google Scholar 

  58. Hess, B.A.: Phys. Rev. A33, 3742 (1986)

    Google Scholar 

  59. Chang, Ch., Pelissier, M., Durand, Ph.: Phys. Scr.34, 394 (1987)

    Google Scholar 

  60. Hurley, W.J.: Phys. Rev. D3, 2339 (1971); D4, 3605 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutzelnigg, W. Perturbation theory of relativistic corrections. Z Phys D - Atoms, Molecules and Clusters 11, 15–28 (1989). https://doi.org/10.1007/BF01436580

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01436580

PACS

Navigation