Skip to main content
Log in

Metabolic diversity in epibiotic microflora associated with the Pompeii wormsAlvinella pompejana andA. caudata (Polychaetae: Annelida) from deep-sea hydrothermal vents

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Specimens of alvinellid polychaetes (Alvinella pompejana Desbruyères and Laubier, 1980 andA. caudata Desbruyères and Laubier, 1986) and their tubes were sampled from deep-sea hydrothermal vents at 13°N from the manned submersible “Nautile” during the “Hydronaut” cruise (October to November 1987) on the East Pacific Rise. Samples were subjected to bacterial analysis aboard the mother ship “Nadir” to detect bacteria involved in the nitrogen and sulphur cycles, in non-specific heterotrophic processes, and displaying resistance to selected heavy metals. Cultures were incubated at different temperatures under atmospheric and “in situ” (250 atm) pressures. Bacterial growth was observed in enrichment cultures for most metabolic types screened. Heavy-metal-resistant bacteria were also detected in many samples. No filamentous bacterial form was observed in the cultures. The results demonstrate a high metabolic diversity in episymbiotic flora, indicating that the worm (A. pompejana orA. caudata), its tube and its epiflora represent a complex micro-ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Abd El Malek, Y., Rizk, S. G. (1958). Counting of sulphate reducing bacteria in mixed bacterial populations. Nature, Lond. 182: p. 538

    Google Scholar 

  • Adair, F. W., Gundersen, K. (1969). Chemoautotrophic sulfur bacteria in the marine environment: isolation, cultivation and distribution. Can. J. Microbiol. 15: 345–353

    Google Scholar 

  • Alayse-Danet, A. M. (1988). Rapport préliminaire des recherches effectuées pendant la campagne “Hydronaut”. Ifremer/DERO/EP (Département Etudes et Recherche Océaniques/Environnement Profond), Brest, France

    Google Scholar 

  • Alayse-Danet, A. M., Gaill, F., Desbruyères, D. (1986).In situ bicarbonate uptake by bacteria-Alvinella associations. Mar. Ecol. 7: 233–240

    Google Scholar 

  • Belliveau, B. H., Starodub, M. E., Cotter, C., Trevors, J. T. (1987). Metal resistance and accumulation in bacteria. Biotech. Adv. 5: 101–127

    Google Scholar 

  • Baross, J. A., Deming, J. W. (1985). The role of bacteria in the ecology of black smoker environments. Bull. biol. Soc. Wash. 6: 355–371

    Google Scholar 

  • Baross, J. A., Lilley, M. D., Gordon, L. I. (1982). Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria? Nature, Lond. 298: 366–368

    Google Scholar 

  • Cavanaugh, C. M:, Gardiner, S. L., Jones, M. L., Jannasch, H. W., Waterbury, J. B. (1981). Prokaryotic cells in the hydrothermal vent tube wormRiftia pachyptila Jones: possible chemoautotrophic symbionts. Science, N.Y. 213: 340–342

    Google Scholar 

  • Chamroux, S. (1972). Etude des bactéries marines réduisant le nitrate. 1: Isolement. Annls Inst. Pasteur, Paris 122: 475–481

    Google Scholar 

  • Cosson-Mannevy, M. A., Cosson, R., Gaill, F. (1986). Mise en évidence de protéines de type métallothionéine chez deux invertébrés des sources hydrothermales, le pogonophore vestimentifèreRiftia pachyptila et l'annélide polychèteAlvinella pompejana. C. r. hebd. Séanc. Acad. Sci., Paris 302: 347–352

    Google Scholar 

  • Desbruyères, D., Crassous, P., Crassle, J., Khripounoff, A., Reyss, D., Rio, M., Van Praet, M. (1982). Données écologiques sur un nouveau site d'hydrothermalisme actif de la ride du Pacifique oriental. C. r. hebd. Séanc. Acad. Sci., Paris 295: 489–494

    Google Scholar 

  • Desbruyères, D., Gaill, F., Laubier, L., Fouquet, Y. (1985). Polychaetous annelids from hydrothermal vent ecosystem: an ecological review. Bull. biol. Soc. Wash. 6: 103–116

    Google Scholar 

  • Desbruyères, D., Gaill, F., Laubier, L., Prieur, D., Rau, G. H. (1983). Unusual nutrition of the “Pompeii worm”Alvinella pompejana (polychaetous annelid) from a hydrothermal vent environment: SEM, TEM,13C and15N evidence. Mar. Biol. 76: 201–205

    Google Scholar 

  • Desbruyères, D., Laubier, L. (1980).Alvinella pompejana gen. sp. nov., Ampharetidae aberrant des sources hydrothermales de la ride Est-Pacifique. Oceanol. Acta 3: 267–274

    Google Scholar 

  • Desbruyères, D., Laubier, L. (1982).Paralvinella grasslei, new genus, new species of Alvinellidae (Polychaeta: Ampharaetidae) from the Galapagos rift geothermal vents. Proc. biol. Soc. Wash. 95: 484–494

    Google Scholar 

  • Desbruyères, D., Laubier, L. (1986). Les Alvinellidae, une famille nouvelle d'annélides polychètes inféodées aux sources hydrothermales sous marines: systématique, biologie et écologie. Can. J. Zool. 64: 2227–2245

    Google Scholar 

  • Felbeck, H., Somero, G. N. (1982). Primary production in deep-sea hydrothermal vent organisms: role of sulfide-oxidizing bacteria. Trends biochem. Sciences 7: 201–204

    Google Scholar 

  • Fiala-Médioni, A. (1984). Mise en évidence par microscopie électronique à transmission de l'abondance de bactéries symbiotiques dans la branchie de mollusques bivalves de sources hydrothermales profondes. C. r. hebd. Séanc. Acad. Sci., Paris 298: 487–492

    Google Scholar 

  • Gaill, F., Desbruyères, D., Prieur, D. (1987). Bacterial communities associated with “Pompeii worms” from the East Pacific Rise hydrothermal vents: SEM, TEM observations, Microb. Ecol. 13: 129–139

    Google Scholar 

  • Gaill, F., Desbruyères, D., Prieur, D., Gourret, J. P. (1984a). Mise en évidence de communautés bactériennes épibiontes du “ver de Pompéi” (Alvinella pompejana). C. r. hebd. Séanc. Acad. Sci., Paris 298: 553–558

    Google Scholar 

  • Gaill, F., Halpern, S., Quintana, C., Desbruyères, D. (1984b). Présence intracellulaire d'arsenic et de zinc associés au soufre chez un Polychète des sources hydrothermales. C. r. hebd. Séanc. Acad. Sci., Paris 298: 331–335

    Google Scholar 

  • Hajj, H., Makemson, J. (1976). Determination of growth ofSphaerotilus discophorus in the presence of manganese. Appl. envirl Microbiol. 32: 699–702

    Google Scholar 

  • Jacq, E., Prieur, D., Nichols, P., White, D. C., Porter, T., Geesey, G. G. (1989). Microscopic examination and fatty acid characterization of filamentous bacteria colonizing substrata around subtidal hydrothermal vents. Archs Microbiol. 152: 64–71

    Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. (1979). Chemosynthetic primary production at East Pacific sea floor spreading centers. BioSci. 29: 592–598

    Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. (1981). Morphological survey of microbial mats near deep-sea thermal vents. Appl. envirl Microbiol. 41: 428–538

    Google Scholar 

  • Jeanthon, C., Prieur, D. (1990). Resistance to heavy metals of heterotrophic bacteria isolated from the deep-sea hydrothermal vent polychaeteAlvinella pompejana. Prog. Oceanogr. (in press)

  • Johnson, I., Flower, N., Loutit, M. W. (1981). Contribution of periphytic bacteria to the concentration of chromium in the crabHelice crassa. Microb. Ecol. 7: 245–252

    Google Scholar 

  • Kobayashi, T., Enomoto, R., Sakazaki, R., Kuwuhara, S. (1963). A new selective isolation medium for pathogenicVibrios: TCBS agar. Jap. J. Bact. 18: 387–391

    Google Scholar 

  • Laubier, L., Desbruyères, D., Chassard-Bouchaud, C. (1983). Microanalytical evidence of sulfur accumulation in a polychaete from deep-sea hydrothermal vents. Mar. Biol. Lett 4: 113–116

    Google Scholar 

  • Le Pennec, M., Prieur, D. (1984). Observations sur la nutrition d'un Mytilidae d'un site d'hydrothermalisme actif de la dorsale du Pacifique oriental. C. r. hebd. Séanc. Acad. Sci., Paris 298: 493–498

    Google Scholar 

  • Lewis, R. F., Pramer, D. (1958): Isolation ofNitrosomonas in pure culture. J. Bact. 76: 524–528

    Google Scholar 

  • Lilley, M. D., Baross, J. A., Gordon, L. I. (1983). Reduced gases and bacteria in hydrothermal fluids: the Galapagos spreading center and 21°N East Pacific Rise. In: Rona, P. A., Böstrom, K., Laubier, L., Smith, K. L., Jr. (eds.) Hydrothermal processes at sea floor spreading centers. Plenum Press, New York, p. 411–419

    Google Scholar 

  • Mevel, G. (1986). Contribution à l'étude de la nitrification dans l'eau et le sédiment d'écosystèmes littoraux et estuariens. Etudein situ et expérimentale. Thèse doctorat d'Etat. Université de Brest

  • Nealson, K. H. (1978). The isolation and characterization of marine bacteria which catalyse manganese oxidation. In: Krumbein, W. E. (ed.) Environmental biogeochemistry and geomicrobiology. Vol. 3. Ann Arbor Science Publishers Inc., Ann Arbor, Michigan, p. 847–858

    Google Scholar 

  • Nelson, D. C., Jannasch, H. W. (1983). Chemoautotrophic growth of a marineBeggiatoa in sulfide-gradient cultures. Archs Microbiol. 136: 262–269

    Google Scholar 

  • Oeschger, R., Schmaljohann, R. (1988). Association of various type of epibacteria withHalicryptus spinulosus (Priapulidae). Mar. Ecol. Prog. Ser. 48: 285–293

    Google Scholar 

  • Oppenheimer, C. H., Zobell, C. E. (1952). The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J. mar. Res. 11: 10–18

    Google Scholar 

  • Postgate, J. R. (1966). Media for sulphur bacteria. Lab. Pract. 15: 1239–1244

    Google Scholar 

  • Postgate, J. R. (1972). The acetylene reduction test for nitrogen fixation. In: Norriss, J. R., Ribbons, P. W. (eds.) Methods in microbiology. Vol. 6B. Academic Press, London, p. 343–356

    Google Scholar 

  • Prieur, D., Jeanthon, C. (1987). Preliminary study of heterotrophic bacteria isolated from two deep-sea hydrothermal vent invertebrates:Alvinella pompejana (polychaete) andBathymodiolus thermophilus (bivalve). Symbiosis 4: 87–98

    Google Scholar 

  • Ruby, E. G., Wirsen, C. O., Jannasch, H. W. (1981). Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos rift hydrothermal vents. Appl. envirl Microbiol. 42: 317–324

    Google Scholar 

  • Sieburth, J. McN. (1975). Microbial seascapes. University Park Press, Baltimore, Md

    Google Scholar 

  • Sieburth, J. McN. (1987). Contrary habitats for redox-specific processes: methanogenesis in oxic waters and oxidation in anoxic waters. In: Sleigh, M. A. (ed.) Microbes in the sea. Ellis Horwood Ltd., Chichester, p. 11–31

    Google Scholar 

  • Tuttle, J. H. (1985). The role of sulfur-oxidizing bacteria at deep-sea hydrothermal vents. Bull. biol. Soc. Wash. 6: 335–343

    Google Scholar 

  • Tuttle, J. H., Jannasch, H. W. (1972). Occurrence and type ofThiobacillus-like bacteria in the sea. Limnol. Oceanogr. 17: 532–543

    Google Scholar 

  • Tuttle, J. H., Wirsen, C. O., Jannasch, H. W. (1983). Microbial activities in the emitted hydrothermal waters of the Galápagos Rift vents. Mar. Biol. 73: 293–299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prieur, D., Chamroux, S., Durand, P. et al. Metabolic diversity in epibiotic microflora associated with the Pompeii wormsAlvinella pompejana andA. caudata (Polychaetae: Annelida) from deep-sea hydrothermal vents. Mar. Biol. 106, 361–367 (1990). https://doi.org/10.1007/BF01344313

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344313

Keywords

Navigation