Skip to main content
Log in

Application of the finite element method to time-dependent quantum mechanics: II. H +2 in a laser field

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A finite element method in Cartesian coordinates in three dimensions is described to solve the time-dependent Schrödinger equation for H +2 in the presence of time-dependent electromagnetic fields. The ionization rates, nonlinear optical polarizabilities and harmonic generation spectrum of H +2 have been calculated for field directions parallel or perpendicular to the hydrogen molecule ion axis. Comparisons of the present numerical results with previously published calculations show that the finite element method reproduces perturbative results and can treat nonperturbativity arbitrary intense short pulses as it includes automatically both bound and continuum electronic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.D. Bandrauk (ed.),Atomic Molecular Processes with Short Intense Laser Pulses, NATO ASI, Vol. B171 (Plenum Press, New York, 1988).

    Google Scholar 

  2. A.D. Bandrauk and S.C. Wallace (eds.),Coherence Phenomena in Atoms and Molecules in Laser Fields, NATO ASI, Vol. B278 (Plenum Press, New York, 1992).

    Google Scholar 

  3. A.D. Bandrauk,Molecules in Laser Fields (Marcel Dekker, New York, 1993).

    Google Scholar 

  4. J.L. Krause, K.J. Schafer and K.C. Kulander, Chem. Phys. Lett.178 (1991) 573.

    Google Scholar 

  5. S. Chelkowski, T. Zuo and A.D. Bandrauk, Phys. Rev. A46 (1992) 5342.

    Google Scholar 

  6. M.S. Pinzola, C.J. Bottrell and C. Bottcher, J. Opt. Soc. Am. B7 (1990) 659.

    Google Scholar 

  7. P.L. Devries, J. Opt. Soc. Am. B7 (1990) 519.

    Google Scholar 

  8. K.C. Kulander, Phys. Rev. A36 (1987) 2726.

    Google Scholar 

  9. P.H. Buchsbaum, A. Zavriyev, H.G. Muller and D.W. Schumacher, Phys. Rev. Lett. 64 (1990) 1883.

    Google Scholar 

  10. A.D. Bandrauk and M.L. Sink, Chem. Phys. Lett. 57 (1978) 569; J. Chem. Phys. 74 (1981) 1110.

    Google Scholar 

  11. E. Aubanel, A.D. Bandrauk and P. Rancourt, Chem. Phys. Lett.197 (1992) 419.

    Google Scholar 

  12. H. Yu, A.D. Bandrauk and V. Sonnad, in ref. [2], p. 31.

  13. H. Yu, A.D. Bandrauk and V. Sonnad, Part I of this paper, J. Math. Chem. 15 (1994) 273.

    Google Scholar 

  14. M. Horbatsch, Phys. Rev. A44 (1991) 5346.

    Google Scholar 

  15. J.H. Eberly, Q. Su and J. Javanainen, Phys. Rev. Lett. 62 (1989) 881.

    Google Scholar 

  16. K. LaGattuta, Phys. Rev. A41 (1991) 5157.

    Google Scholar 

  17. B.A. Finlayson, Method of Weighted Residues (Academic Press, New York, 1974).

    Google Scholar 

  18. O.C. Zinkiewicz and K. Morgan,Finite Elements and Approximation (Wiley, New York, 1983).

    Google Scholar 

  19. D. Sundholm, J. Olsen and S.A. Alexander, J. Chem. Phys. 96 (1992) 5229.

    Google Scholar 

  20. D. Heinemann, A. Rosen and B. Fricke, Chem. Phys. Lett.166 (1990) 627.

    Google Scholar 

  21. D. Heinemann, B. Fricke and D. Kolb, J. Chem. Phys. 38 (1988) 4994.

    Google Scholar 

  22. T. Inoshita, Phys. Rev. B41 (1990) 180.

    Google Scholar 

  23. H. Murakami, V. Sonnad and E. Clementi, Int. J. Quant. Chem. 42 (1992) 785.

    Google Scholar 

  24. G. Hammerlin and K.H. Hoffmann, Numerical Methods (Springer, New York, 1991).

    Google Scholar 

  25. A.D. Becke, J. Chem. Phys. 76 (1982) 6037.

    Google Scholar 

  26. A.D. Becke and R.M. Dickson, J. Chem. Phys. 92 (1990) 3610.

    Google Scholar 

  27. E. Clementi (ed.),Modern Technique in Computational Chemistry: MOTECC90 (1990) chap. 12.

  28. J.K. Cullum and R.A. Willoughby,Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. II, Program (Birkhauser, New York, 1985).

    Google Scholar 

  29. M.G. Duffy, SIAM. J. Numer. Anal. 19 (1982) 1260.

    Google Scholar 

  30. I.L. Levine,Quantum Chemistry, 3rd Ed. (Allyn and Bacon, Newton, Massachusetts, 1983).

    Google Scholar 

  31. H. Yu, A.D. Bandrauk and V. Sonnad, to appear in Chem. Phys. Lett. (1994).

  32. A.D. Bandrauk and H. Shen, J. Chem. Phys. 99 (1993) 1185.

    Google Scholar 

  33. N.C. Manakov, M.A. Preobrazhenskii and L.P. Rapoport, Opt. Spectr. 35 (1973) 14.

    Google Scholar 

  34. C.A. Nicolaides, T. Mercouris and G. Aspromallis, J. Opt. Soc. Am. B7 (1990) 494.

    Google Scholar 

  35. Y. Justum, A. Maquet and Y. Heno, Phys. Rev. A41 (1990) 2791.

    Google Scholar 

  36. L.L. Boyle, A.D. Buckingham, R.L. Disch and D.A. Dunmur, J. Chem. Phys. 45 (1966) 1318.

    Google Scholar 

  37. P. Sitz and R. Yaris, J. Chem. Phys. 48 (1968) 3546.

    Google Scholar 

  38. P.R. Taylor, T.J. Lee, J.E. Rice and J. Almlof, Chem. Phys. Lett.163 (1989) 359.

    Google Scholar 

  39. M. Jaszunski and D.L. Yeager, Phys. Rev. A40 (1989)1651.

    Google Scholar 

  40. J.E. Rice, P.R. Taylor, T.J. Lee and J. Almlof, J. Chem. Phys. 94 (1991) 4972.

    Google Scholar 

  41. R.B. Miller and S.E. Harris, IEEE J. Quant. Electr. QE-9 (1973) 470.

    Google Scholar 

  42. D.M. Bishop, J. Pipin and J.N. Silverman, Mol. Phys. 59 (1986) 165.

    Google Scholar 

  43. L. Adamowicz and R.J. Bartlett, J. Chem. Phys. 84 (1986) 4988.

    Google Scholar 

  44. D.M. Bishop and B. Lam, Chem. Phys. Lett. 134 (1987) 283.

    Google Scholar 

  45. D.M. Bishop and L.M. Cheung, J. Phys. B11 (1978) 3133.

    Google Scholar 

  46. D.M. Bishop, Rev. Mod. Phys. 62 (1990) 343.

    Google Scholar 

  47. D.M. Bishop and L.M. Cheung, J. Phys. B12 (1979) 3135.

    Google Scholar 

  48. P.R. McEachran, S. Smith and M. Cohen, Can. J. Chem. 52 (1974) 3463.

    Google Scholar 

  49. Y.R. Shen,The Principles ofNonlinear Optics (Wiley, New York, 1984).

    Google Scholar 

  50. M. Ferry, A. L'Huillier, X. Li, L.A. Lompr/'e, G. Mainfray and C. Manus, J. Phys. B21 (1988) L31.

    Google Scholar 

  51. X.F. Li, A. L'Huillier, M. Ferry, L.A. Lompré, G. Mainfray, Phys. Rev. A39 (1989) 3751.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Bandrauk, A.D. & Sonnad, V. Application of the finite element method to time-dependent quantum mechanics: II. H +2 in a laser field. J Math Chem 15, 287–301 (1994). https://doi.org/10.1007/BF01277566

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01277566

Keywords

Navigation