Skip to main content
Log in

Curved graphite and its mathematical transformations

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Mathematical transformations for graphite with positive, negative and zero Gaussian curvatures are presented. When the Gaussian curvatureK is zero, we analyse a bending transformation from a planar sheet into a cone. The Bonnet, the Goursat and a mixed transformation are studied for graphitic structures with the same topologies as triply periodic minimal surfaces (K < 0). We have found that using the Kenmotsu equations for surfaces of constant mean curvature it is possible to invert spherical and cylindrical graphite. A bending transformation for surfaces of revolution is also studied; during this transformation the helical arrangement of cylinders changes. All these transformations can give an insight into kinematic processes of curved graphite and into new shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Andersson, S.T. Hyde, K. Larsson and S. Lidin, Chem. Rev. 88 (1988) 221.

    Google Scholar 

  2. O. Bonnet, Note sur la théorie générale des surfaces, C.R. Acad. Sei. Paris 37 (1853) 529–532.

    Google Scholar 

  3. A. Borchardt, A. Fuchicello, K.V. Kilway, K.K. Baldridge and J.S. Siegel, J. Am. Chem. Soc. 114 (1992)1921.

    Google Scholar 

  4. M. Do Carmo,Differential Geometry of Curves and Surfaces (Prentice-Hall, New Jersey, 1976).

    Google Scholar 

  5. J. Emsley, New Scientists 134 (9 May 1992) 14.

    Google Scholar 

  6. F. Gackstatter, Colloq. Physique C7, Suppl. 23, 51 (1990) 163.

    Google Scholar 

  7. E. Goursat, Sur un mode de transformation des surfaces minima, Acta Mathematica 11 (1l Feb. 1888) 135–186.

    Google Scholar 

  8. E. Goursat, Sur un mode de transformation des surfaces minima (Second Mémoire), Acta Mathematica 11(29 March 1888) 257–264.

    Google Scholar 

  9. N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579.

    Google Scholar 

  10. S.T. Hyde and S. Andersson, Z. Kristallogr. 170 (1985) 225.

    Google Scholar 

  11. S.T. Hyde and S. Andersson, Z. Kristallogr. 174 (1986) 225.

    Google Scholar 

  12. S. Iijima, Nature 354 (1991) 56.

    Google Scholar 

  13. S. Iijima, T. Ichihashi and Y. Ando, Nature 356 (1992) 776.

    Google Scholar 

  14. S.P. Kelty, Chen Chia-Chun and C.M. Leiber, Nature 352 (1991) 223.

    Google Scholar 

  15. K. Kenmotsu, Math. Ann. 245 (1979) 89.

    Google Scholar 

  16. J.J. Koenderink,Solid Shape (The MIT Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  17. W. Krätschmer, L.D. Lamb, K. Fostiropoulos and D.R. Huffman, Nature 347 (1990) 354.

    Google Scholar 

  18. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl and R.E. Smalley, Nature 318 (1985) 162.

    Google Scholar 

  19. H.W. Kroto, Nature 239 (1987) 529.

    Google Scholar 

  20. H. Kroto, Science 242 (1988) 1139.

    Google Scholar 

  21. T. Lenosky, X. Gonze, M. Teter and V. Elser, Nature 355 (1992) 333.

    Google Scholar 

  22. A.L. Mackay, Physica B 131 (1985) 300.

    Google Scholar 

  23. A. L. Mackay, Nature 314 (1985) 604.

    Google Scholar 

  24. A.L. Mackay and H. Terrones, Nature 352 (1991) 762.

    Google Scholar 

  25. J.C.C. Nitsche,Lectures on Minimal Surfaces, Vol. l (Cambridge University Press, 1989).

  26. M. O'keeffe, G.B. Adams and O.F. Sankey, Phys. Rev. Lett. 68 (1992) 2325.

    Google Scholar 

  27. A.H. Schoen, Infinite periodic minimal surfaces without self-intersections, NASA Technical Note D-5541(1970).

  28. H.A. Schwarz,Gesammelte Mathematische Abhandlungen, Vol. 1 (Springer, Berlin, 1890).

    Google Scholar 

  29. T.L. Scott, M.M. Hashemi and M.S. Bratcher, J. Am. Chem. Soc. 114 (1992) 1920.

    Google Scholar 

  30. M. Spivak,A Comprehensive Introduction to Differential Geometry, Vols. 1–5 (Publish or Perish, Berkeley, 1979).

    Google Scholar 

  31. D.J. Struik, Differential Geometry (Addison-Wesley, Reading, Massachusetts, 1961).

    Google Scholar 

  32. H. Terrones, Colloq. Physique C7, 51 (1990) 345.

    Google Scholar 

  33. H. Terrones, Mathematical surfaces and invariants in the study of atomic structures, Ph.D. Thesis, University of London (1992).

  34. H. Terrones and A.L. Mackay, J. Math. Chem. 15 (1994) 183.

    Google Scholar 

  35. H. Terrones and A.L. Mackay, Micelles and foams: 2-manifolds arising from local interactions,NATO Advanced Research Workshop: Growth Patterns in Physics and Biology, eds. E. Louis, L. Sander and P. Meakin (Plenum Press, to be published).

  36. D. Vanderbilt and J. Tersoff, Phys. Rev. Lett. 68 (1992) 511.

    Google Scholar 

  37. K. Weierstrass, Untersuchungen über die Flächen, deren mittlere Krümmung überall gleich null ist, Monatsber. d. Berliner Akad. (1866) pp. 612–625.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrones, H. Curved graphite and its mathematical transformations. J Math Chem 15, 143–156 (1994). https://doi.org/10.1007/BF01277556

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01277556

Keywords

Navigation