Skip to main content
Log in

Collapsing functions based on recursively large ordinals: A well-ordering proof for KPM

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Summary

It is shown how the strong ordinal notation systems that figure in proof theory and have been previously defined by employing large cardinals, can be developed directly on the basis of their recursively large counterparts. Thereby we provide a completely new approach to well-ordering proofs as will be exemplified by determining the proof-theoretic ordinal of the systemKPM of [R91].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Bac50] Bachmann, H.: Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordinalzahlen. Vierteljahresschr. Nat. Ges. Zürich95, 5–37 (1950)

    Google Scholar 

  • [Bar75] Barwise, J.: Admissible sets and structures. Berlin Heidelberg New York: Springer 1975

    Google Scholar 

  • [Bu86] Buchholz, W.: A new system of proof-theoretic ordinal functions. Ann. Pure Appl. Logic32, 195–207 (1986)

    Google Scholar 

  • [Bu92] Buchholz, W.: A simplified version of local predicativity. In: Aczel, Simmons, Wainer (eds.) Proof Theory, Cambridge University Press 1992

  • [Bu et al. 81] Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated inductive definitions and subsystems of analysis. LNM 897. Berlin Heidelberg New York: Springer 1981

    Google Scholar 

  • [Bu-P78] Buchholz, W., Pohlers, W.: Provable wellorderings of formal theories for transfinitely iterated inductive definitions. J. Symb. Logic43, 118–125 (1978)

    Google Scholar 

  • [Bu-S88] Buchholz, W., Schütte, K.: Proof theory of impredicative subsystems of analysis. Naples: Bibliopolis 1988

    Google Scholar 

  • [F87] Feferman, S.: Proof theory: a personal report. In: G. Takeuti, Proof theory, second edition. Amsterdam: North-Holland 1987, pp. 447–485

    Google Scholar 

  • [I70] Isles, D.: Regular ordinals and normal forms. In: Myhill, Kino, Vesley (eds.), Intuitionism and proof theory, Amsterdam: North Holland 1970, pp. 339–361

    Google Scholar 

  • [J84] Jäger, G.: ϱ-inaccessible ordinals, collapsing functions and a recursive notation system. Arch. Math. Logik Grundlagenforsch.24, 49–62 (1984)

    Google Scholar 

  • [P87] Pohlers, W.: Ordinal notations based on a hierarchy of inaccessible cardinals. Ann. Pure Appl. Logic33, 157–179 (1987)

    Google Scholar 

  • [P91] Pohlers, W.: Proof theory and ordinal analysis. Arch. Math. Logic30, 311–376 (1991)

    Google Scholar 

  • [R90] Rathjen, M.: Ordinal notations based on a weakly Mahlo cardinal. Arch. Math. Logic29, 249–263 (1990)

    Google Scholar 

  • [R91] Rathjen, M.: Proof-theoretic analysis of KPM. Arch. Math. Logic30, 377–403 (1991)

    Google Scholar 

  • [R92] Rathjen, M.: Fragments of Kripke-Platek set theory with infinity. In: Aczel, P., Wainer, S., Simmons, S. (eds.), Proof theory. Cambridge University Press 1992, pp. 251–273

  • [R93a] Rathjen, M.: How to develop proof-theoretic ordinal functions on the basis of admissible sets. Mathematical Quaterly39, 47–54 (1993)

    Google Scholar 

  • [R93b] Rathjen, M.: Proof theory of reflection. 1993. To appear in: Ann. Pure Appl. Logic

  • [S77] Schütte, K.: Proof theory. Berlin Heidelberg New York: Springer 1977

    Google Scholar 

  • [S88] Schütte, K.: Ein Wohlordnungsbeweis für das OrdinalzahlensystemT(J). Arch. Math. Logic27, 5–20 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author would like to thank the National Science Foundation for partially supporting this research by grant DMS-9203443

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathjen, M. Collapsing functions based on recursively large ordinals: A well-ordering proof for KPM. Arch Math Logic 33, 35–55 (1994). https://doi.org/10.1007/BF01275469

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01275469

Mathematics subject classification (1991)

Navigation