Skip to main content
Log in

Metaphysiological and evolutionary dynamics of populations exploiting constant and interactive resources:R—K selection revisited

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

I begin by reviewing the derivation of continuous logistic growth and dynamic consumer—resource interaction equations in terms of specific resource extraction and biomass conversion functions that are considered to hold at a population level. Evolutionary stable strategy (ESS) methods are discussed for analysing populations modelled by these equations. The question of selection trade-offs is then considered, particularly in the context of populations being efficient at extracting resources versus converting resources to their own biomass. Questions relating to single populations with high versus low conversion rates and interacting populations with high versus low self-interference rates are also considered. The models discussed here demonstrate conclusively that self-interference is an essential part of any consumption process: without it population growth and interaction processes do not make any sense. The analysis clarifies concepts relating to the somewhat discredited notion ofr—K selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akçakaya, H. R. (1992) The population cycles of mammals: evidence for a ratio-dependent predation hypothesis.Ecol. Monogr. 62 119–42.

    Google Scholar 

  • Arditi, R. and Ginzburg, L. R. (1989) Coupling in prey—predator dynamics: ratio dependence.J. Theor. Biol. 139, 311–26.

    Google Scholar 

  • Arditi, R. and Saïah, H. (1992) Empirical evidence of the role of heterogeneity in ratio-dependent consumption.Ecology 73, 1544–51.

    Google Scholar 

  • Bazzaz, F. A. and Pickett, S. T. A. (1980) Physiological ecology of tropical succession: a comparative review.Ann. Rev. Ecol. Syst. 11, 287–310.

    Google Scholar 

  • Bergh, M. O. and Getz, W. M. (1989) Stability and harvesting of competing population with genetic variation in life history strategies.Theor. Pop. Biol. 36, 77–124.

    Google Scholar 

  • Berryman, A. A. (1992) The origins and evolution of prey-predator theory.Ecology 73, 1530–5.

    Google Scholar 

  • Brown, J. S. and Vincent, T. L. (1987) A theory for the evolutionary game.Theor. Pop. Biol. 31, 140–66.

    Google Scholar 

  • DeAngelis, D. L., Goldstein, R. A. and O'Neill, R. V. (1975) A model for trophic interaction.Ecology 56, 881–92.

    Google Scholar 

  • Emlen, J. M. (1984)Population Biology: The Coevolution of Population Dynamics and Behavior, p. 547. Macmillan, NY, USA.

    Google Scholar 

  • Getz, W. M. (1984) Population dynamics: a resource per capita approach.J. Theor. Biol. 108, 623–44.

    Google Scholar 

  • Getz, W. M. (1991) A unified approach to multispecies modeling.Nat. Res. Model. 5, 393–421.

    Google Scholar 

  • Getz, W. M. (1993) Beyond Lotka—Volterra—Gause—Holling and MacArthur—Tilman models. InLecture Notes in Biomathematics, (S. A. Levin, ed.), Vol. 100. Springer-Verlag, NY, USA (in press).

    Google Scholar 

  • Getz, W. M. and Kaitala, V. (1993) Ecogenetic analysis and evolutionary stable strategies in harvested populations. InManagement of Evolving Resources, (R. Stokes, R. Law and J. MacGlade, eds). Springer-Verlag, NY, USA.

    Google Scholar 

  • Ginzburg, L. R. (1986) The theory of population dynamics: I. Back to first principles.J. Theor. Biol. 122, 385–99.

    Google Scholar 

  • Ginzburg, L. R. and Akçakaya, H. R. (1992) Consequences of ratio-dependent predation for steady-state properties of ecosystems.Ecology 73, 1536–43.

    Google Scholar 

  • Ginzburg, L. R., Goldman, Y. I. and Railkin, A. I. (1972) A mathematical model of interaction between two populationsZh.Obshch. Biol. 33, 450–5.

    Google Scholar 

  • Gutierrez, A. P. (1992) Physiological basis of ratio-dependent prey—predator theory: the metabolic pool model as a paradigm.Ecology 73, 1552–63.

    Google Scholar 

  • Gutierrez, A. P., Baumgaertner, J. U. and Hagen, K. S. (1981) A conceptual model for growth, development, and reproduction in the ladybird beetleHippodamia convergences G.-M. (Coccinellidae: Coleoptera).Can. Entomol. 113, 21–33.

    Google Scholar 

  • Hall, C. A. S. (1988) An assessment of several of the historically most influential theoretical models used in ecology and the data provided for their support.Ecol. Model. 43, 5–31.

    Google Scholar 

  • Hanski, I. (1991) The functional response of predators: worries about scale.TREE 6, 141–2.

    Google Scholar 

  • Holling, C. S. (1959) Some characteristics of simple types of predation and parasitism.Can. Entomol. 91, 385–98.

    Google Scholar 

  • Horn, H. S. and Rubenstein, D. I. (1984) Behavioral adaptations and life history. InBehavioral Ecology: An Evolutionary Approach (J. R. Krebs and N. B. Davies, eds), 2nd edn, pp. 279–98. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • MacArthur, R. H. (1962) Some generalized theorems on natural selection.Proc. Natl Acad. Sci. USA 48, 1893–7.

    Google Scholar 

  • MacArthur, R. H. (1972)Geographical Ecology: Patterns in the Distribution of Species. Harper and Row, NY, USA.

    Google Scholar 

  • MacArthur, R. H. and Wilson, E. O. (1967)The Theory of Island Biogeography. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • May, R. M. (1981) Models of two interacting populations. InTheoretical Ecology, 2nd ed, pp. 78–104. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Maynard Smith, J. (1982)Evolution and the Theory of Games. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Maynard Smith, J. (1989)Evolutionary Genetics, p. 325. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Maynard Smith, J. and Price, G. R. (1973) The logic of animal conflict.Nature 246, 15–8.

    Google Scholar 

  • McLain, D. E. (1991) Ther—K continuum and the relative effectiveness of sexual selection.Oikos 60, 263–5.

    Google Scholar 

  • Pearl, R. and Reed, L. J. (1927) On the rate of growth of the population of the United States since 1790 and its mathematical representation.Proc. Natl Acad. Sci. USA 6, 275–88.

    Google Scholar 

  • Pianka, E. R. (1970) Onr- andK-selection.Am. Nat. 104, 592–7.

    Google Scholar 

  • Pitcairn, M. J., Getz, W. M. and Williams, D. W. (1990) Resource availability and parasitoid abundance in the analysis of host-parasite data.Ecology 71, 2372–4.

    Google Scholar 

  • Rosenzweig, M. L. (1973) Exploitation in three tropic levels.Am. Nat. 107, 275–94.

    Google Scholar 

  • Rosenzweig, M. L. (1977) Aspects of biological exploitation.Q. Rev. Biol. 52, 371–80.

    Google Scholar 

  • Rosenzweig, M. L. and MacArthur, R. H. (1963) Graphical representation and stability conditions of predator—prey interactions.Am. Nat. 97, 209–23.

    Google Scholar 

  • Roughgarden, J. (1979)Theory of Population Genetics and Evolutionary Ecology: An Introduction, p. 634. Macmillan, NY, USA.

    Google Scholar 

  • Roughgarden, J. (1983) The theory of coevolution. InCoevolution (D. J. Futuyma and M. Slatkin, eds), pp. 33–64. Sinauer, Sunderland, MA, USA.

    Google Scholar 

  • Roughgarden, J. (1987) Community coevolution: a comment.Evolution 41, 1130–4.

    Google Scholar 

  • Szathmaáry, E. (1991) Simple growth laws and selection consequences.TREE 11, 366–70.

    Google Scholar 

  • Schoener, T. W. (1973) Population growth regulated by intraspecific competition for energy or time: some simple representations.Theor. Pop. Biol. 4, 56–84.

    Google Scholar 

  • Slatkin, M. (1983) Genetic background. InCoevolution (D. J. Futuyma and M. Slatkin, eds), pp. 14–32. Sinauer, Sunderland, MA, USA.

    Google Scholar 

  • Taper, M. L. and Case, T. J. (1985) Quantitative genetic models for the coevolution of character displacement.Ecology 66, 355–71.

    Google Scholar 

  • Tilman, D. (1982)Resource Competition and Community Structure. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Verhulst, P. F. (1838) Notice sur la loi que la population suit dans son accroissement.Corresp. Math. Phys. 10, 113–26.

    Google Scholar 

  • Vincent, T. L. and Brown, J. S. (1988) The evolution of ESS theory.Ann. Rev. Ecol. Syst. 19, 423–43.

    Google Scholar 

  • Vincent, T. L. (1990) Strategy dynamics and the ESS. InDynamics of Complex Interconnected Biological Systems (T. L. Vincent, A. I. Mees and L. S. Jennings, eds), pp. 236–62. Birkhäuser, Boston, USA.

    Google Scholar 

  • Wollkind, D. J. (1976) Exploitation in three trophic levels: an extension allowing intraspecies carnivore interaction.Am. Nat. 107, 275–94.

    Google Scholar 

  • Yodzis, P. (1989)Introduction to Theoretical Ecology. Harper and Row, NY, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Getz, W.M. Metaphysiological and evolutionary dynamics of populations exploiting constant and interactive resources:R—K selection revisited. Evol Ecol 7, 287–305 (1993). https://doi.org/10.1007/BF01237746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237746

Keywords

Navigation