Skip to main content
Log in

Numerical analysis of the flow characteristics of rotary blood pump

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Thrombus formation and hemolysis have been linked to the dynamics of blood flow in rotary blood pumps and ventricular assist devices. Hemolysis occurs as the blood passes through the pump housing, and thrombi develop in stagnation and low-velocity regions. The predicted velocities, pressure, and turbulence quantities from the numerical simulation are used to identify regions of high shear stress and internal recirculation. A nimerical technique is described that simulates the hydrodynamic characteristics of a rotary blood pump with a flow rate of 6 l/min at a rotational speed of 3000 RPM. A computational fluid dynamics (CFD) code, CFX 4, is used to solve the time-dependent incompressible Navier-Stokes equations using a transient finite volume method and three-dimensional structured grids. The simulation utilized the sliding mesh capabilities of this numerical code to model the rotating impeller and examine the effect of blade shape on the hydrodynamic performance of the blood pump in terms of pressure rise, flow rates, and energy losses. The first impeller model has six straight channels; the second impeller has six backward-curved channels. The results for two impeller configurations are presented and discussed. The curvedpump design resulted in higher pressure rise and maximum shear stresses than the straight-channel one. In general the paper demonstrates that CFD is an essential numerical tool for optimizing pump performance with the aim of reducing trauma to the blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hellums GD, Brown CH. Blood cell damage by mechanical forces. In: Wang V, Normann NA (eds) Cardiovascular flow dynamics and measurement. Baltimore: University Park Press, 1977;799–823

    Google Scholar 

  2. Golding LB, Groves LK, Peters M, Jacobs G, Sukalac R, Nose Y, Loop FD. Initial clinical experience with a new temporary left venticular assist device. Ann Throrac Surg 1980;29:66–69

    Google Scholar 

  3. Baldwin JT, Deutsch S, Geselowitz DB, Tarbell JM. Estimation of Reynolds stresses within the Penn State left ventricular assist device. Trans ASAIO 1990;36:M274-M278

    Google Scholar 

  4. Jin W, Clark C. Experimental investigation of unsteady flow behaviour within a sac-type ventricular assist device (VAD). J Biomech 1993;26:697–707

    PubMed  Google Scholar 

  5. Wernicke J, Merier D, Mizuguchi K, Damm G, Aber G, Benkowski R, Nose Y, Noon G, DeBakey M. A fluid dynamic analysis using flow visualisation of the Baylor/NASA implantable axial flow blood pump for design improvement. Artif Organs 1995;19:161–177

    PubMed  Google Scholar 

  6. Yamane T, Asztalos B, Nishida M, Masuzawa T, Takiura K, Taenaka Y, Konishi Y, Miyazone Y, Ito K. Flow visualisation for saving the number of hemolysis tests in the development of centrifugal blood pump. Artif Organs 1998;22:375–380

    PubMed  Google Scholar 

  7. Takiura K, Masuzawa T, Endo S, Wakisaka Y, Tatsumu E, Taenaka Y, Takano H, Yamane T, Nishida M, Asztalos B, Konishi Y, Miyazoe Y, Ito K. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualisation and computational fluid dynamics: results in hemolysis tests. Artif Organs 1998;22:393–398

    PubMed  Google Scholar 

  8. Schima H, Huber L, Glekas JP, Siegl H, Muller MR, Wieselthaler G, Losert U, Thoma H, Wolner E. Three approaches for flow evaluation in centrifugal blood pumps: numerical calculation, visualization and in-vitro thrombus formation (abstract). Artif Organs 1993;17:471

    Google Scholar 

  9. Treichler J, Rosenow SE, Damm G, Naito K, Ohara Y, Mizuguchi K, Makinouchi K, Takatani S, Nose Y. A fluid dynamic analysis of a rotary blood pump for design improvement. Artif Organs 1993;17:797–808

    PubMed  Google Scholar 

  10. Pinotti M, Panone N, Tomasini EP. Laser Doppler velocity measurements in a centrifugal ventricular assist device. In: Durao DFG, Heitor MV (eds) Proceedings of the 7th International Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal: Instituto superior Tecnico 1994;321–325

    Google Scholar 

  11. Pinotti M, Paone N Estimating mechanical blood trauma in a centrifugal blood pump: laser doppler anemometer measurements of the mean velocity field. Artif Organs 1996;20:546–552

    PubMed  Google Scholar 

  12. Nishida H, Yamaki F, Naktani H, Endo M, Koyanagi H, Oshiyama H, Horiuchi K, Kijima T, Nojiri C, Fukasawa H, Akutsu T. Development of the Terumo Capiox centrifugal pump and its clinical application to open heart surgery: a comparative study with the roller pump. Artif Organs 1993;17:323–327

    PubMed  Google Scholar 

  13. Bludszweit C. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif Organs 1995;19:590–596

    PubMed  Google Scholar 

  14. Miyazoe Y, Sawairi T, Ito K, Yamane T, Nishida M, Asztalos B, Masuzawa T, Tsukiya T, Endo S, Taenaka Y. Computational fluid dynamics analysis to establish the design process of a centrifugal blood pump: Second report. Artif Organs 1999;23:762–768

    PubMed  Google Scholar 

  15. AEA Technology, CFX 4.1 Flow Solver User Guide, Harwell Laboratory, UK, 1995

    Google Scholar 

  16. Morsi YS, Holand PG, Clayton BR. Prediction of turbulent swirling flows in axisymmetric annuli. J Appl Math Model 1995;19:M613-M620

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yos S. Morsi PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morsi, Y.S., Yang, W., Witt, P.J. et al. Numerical analysis of the flow characteristics of rotary blood pump. J Artif Organs 4, 54–60 (2001). https://doi.org/10.1007/BF01235837

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01235837

Key words

Navigation