Skip to main content
Log in

A refined conjecture of Mazur-Tate type for Heegner points

  • Published:
Inventiones mathematicae Aims and scope

Summary

In [MT1], Mazur and Tate present a “refined conjecture of Birch and Swinnerton-Dyer type” for a modular elliptic curveE. This conjecture relates congruences for certain integral homology cycles onE(C) (the modular symbols) to the arithmetic ofE overQ. In this paper we formulate an analogous conjecture forE over a suitable imaginary quadratic fieldK, in which the role of the modular symbols is played by Heegner points. A large part of this conjecture can be proved, thanks to the ideas of Kolyvagin on the Euler system of Heegner points. In effect the main result of this paper can be viewed as a generalization of Kolyvagin's result relating the structure of the Selmer group ofE overK to the Heegner points defined in the Mordell-Weil groups ofE over ring class fields ofK. An explicit application of our method to the Galois module structure of Heegner points is given in Sect. 2.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • [BD] Bertolini, M., Darmon, H.: Kolyvagin's descent and Mordell-Weil groups over ring class fields, J. Reine Angew. Math.412, 63–74 (1990)

    Google Scholar 

  • [D1] Darmon, H.: Refined Class Number Formulas for Derivatives ofL-series. Thesis, Harvard University (May 1991)

  • [D2] Darmon, H.: Euler systems and refined conjectures of Birch Swinnerton-Dyer type. In: Proceedings of a workshop onp-adic monodromy and the Birch Swinnerton-Dyer conjecture. Boston University, August 1991 (to appear)

  • [Gr1] Gross, B.H.: Heegner points onX 0(N). In: Modular Forms, pp 87–105 Rankin, R.A. (ed.) Chichester: Ellis Horwood 1984

    Google Scholar 

  • [Gr2] Gross, B.H.: Heights and the special values of L-series. In: Kisilevsky, H., Labute, J. (eds.) Proceedings of the 1985 Montreal conference on number theory, June 17–29, 1985. CMS. Conf. Proc., vol. 7, Providence, RI: Am. Math. Soc. 1987, pp. 115–188

    Google Scholar 

  • [Gr4] Gross, B.H.: Kolyvagin's work on modular elliptic curves. In: Proc. Durham symposium on L-functions and arithmetic, 1989 (to appear)

  • [GZ] Gross, B.H., Zagier, D.B.: Heegner points and derivatives ofL-series. Invent. Math.84, 225–320 (1986)

    Google Scholar 

  • [H1] Alfred W. Hales, Augmentation terminals of finite abelian groups. In: Gòbel, R. et al. (eds.) Abelian Group Theory. (Lect. Notes. Math., vol. 1006, pp. 720–733) Berlin Heidelberg New York: Springer 1983

    Google Scholar 

  • [H2] Alfred, W.: Hales, Stable augmentation quotients of abelian groups, Pac. J. Math. 118, no. 2, 1985, 401–410

    Google Scholar 

  • [Ka] Kato, K.: Iwasawa theory andp-adic Hodge theory. Manuscript

  • [Ko1] Kolyvagin, V.A.: Finiteness ofE(Q) and III(E/Q) for a subclass of Weil curves. Izv. Akad. Nauk. SSSR Ser. Mat. 52(3) (1988), 522–540; Math USSR Izv.32, 523–541 (1989)

    Google Scholar 

  • [Ko2] Kolyvagin, V.A.: On the Mordell-Weil group and Shafarevich-Tate group of Weil elliptic curves. Izv. Akad. Nauk. SSSR Ser. Mat. 52 (6) (1988), 1154–1179

    Google Scholar 

  • [Ko3] Kolyvagin, V.A.: Euler Systems, (1988). Birkhäuser volume in honor of Grothendieck (to appear)

  • [Ma1] Mazur, B.: Courbes elliptiques et symbole modulaire. In: Séminaire Bourbaki 414 (1971/1972) (Lect. Notes Math., vol. 317) Berlin Heidelberg New York: Springer 1972

    Google Scholar 

  • [Ma2] Mazur, B.: Modular curves and arithmetic. In: Proceedings of the International Congress of Mathematicians, August 16–24, 1983. Warszawa: Polish Scientific Publishers 1984

    Google Scholar 

  • [MS] Mazur B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. Math.25, 1–61 (1974)

    Google Scholar 

  • [MT1] Mazur B., Tate, J.: Refined conjectures of the “Birch and Swinnerton-Dyer type”, Duke Math J. 54, No. 2, 1987, p. 711

    Google Scholar 

  • [MT2] Mazur, B. and Tate, J.: Canonical height pairings via biextensions. In: Arithmetic and Geometry, vol. I, pp. 195–237. Boston Basel Stuttgart Birkhäuser 1983

    Google Scholar 

  • [Mi] Milne, J. S.: Arithmetic duality theorems. (Prespect. Math.) Boston: Academic Press 1986

    Google Scholar 

  • [Pa] I.B.S. Passi, Group rings and their augmentation ideals. (Lect. Notes. Math., vol. 715) Berlin Heidelberg New York: Springer 1979

    Google Scholar 

  • [Se] Serre, J.P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math.15, 259–331 (1972)

    Google Scholar 

  • [Th] Thaine, F.: On the ideal class groups of real abelian number fields, Ann. Math.128, 1–18 (1988)

    Google Scholar 

  • [Wal] Waldspurger, J-L.: Sur les valeurs de certaines fonctionsL automorphes en leur centre de symétrie. Comp. Math.54, 173–242 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 19-XII-1991, & 25-II-1992

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darmon, H. A refined conjecture of Mazur-Tate type for Heegner points. Invent Math 110, 123–146 (1992). https://doi.org/10.1007/BF01231327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01231327

Keywords

Navigation