Skip to main content
Log in

Primary structure and eubacterial relationships of the pyruvate:Ferredoxin oxidoreductase of the amitochondriate eukaryoteTrichomonas vaginalis

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

In the eukaryotic unicellular organismTrichomonas vaginalis a key step of energy metabolism, the oxidative decarboxylation of pyruvate with the formation of acetyl-CoA, is catalyzed by the iron-sulfur protein pyruvate:ferredoxin oxidoreductase (PFO) and not by the almost-ubiquitous pyruvate dehydrogenase multienzyme complex. This enzyme is localized in the hydrogenosome, an organelle bounded by a double membrane. PFO and its closely related homolog, pyruvate: flavodoxin oxidoreductase, are enzymes found in a number of archaebacteria and eubacteria. The presence of these enzymes in eukaryotes is restricted, however, to a few amitochondriate groups. To gain more insight into the evolutionary relationships ofT. vaginalis PFO we determined the primary structure of its two genes (pfoA andpfoB). The deduced amino acid sequences showed 95% positional identity. Motifs implicated in related enzymes in liganding the Fe-S centers and thiamine pyrophosphate were well conserved. TheT. vaginalis PFOs were found to be homologous to eubacterial pyruvate: flavodoxin oxidoreductases and showed about 40% amino acid identity to these enzymes over their entire length. Lack of eubacterial PFO sequences precluded a comparison.pfoA andpfoB revealed a greater distance from related enzymes of Archaebacteria. The conceptual translation of the nucleotide sequences predicted an amino-terminal pentapeptide not present in the mature protein. This processed leader sequence was similar to but shorter than leader sequences noted in other hydrogenosomal proteins. These sequences are assumed to be involved in organellar targeting and import. The results underscore the unusual characteristics ofT. vaginalis metabolism and of their hydrogenosomes. They also suggest that in its energy metabolismT. vaginalis is closer to eubacteria than archaebacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PCR:

DNA polymerase chain reaction

PDH:

pyruvate dehydrogenase

PFO:

pyruvate:ferredoxin oxidoreductase

TPP:

thiamine pyrophosphate

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • Arnold W, Rump A, Klipp W, Priefer U, Puhler A (1988) Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixiation gene cluster ofKlebsiella pneumoniae. J Mol Biol 203:715–738

    Google Scholar 

  • Bauer CC, Scappino L, Haselkorn R (1993) Growth of the cyanobacteriumAnabaena on molecular nitrogen:NifJ is required when iron is limited. Proc Natl Acad Sci USA 90:8812–8816

    Google Scholar 

  • Blarney JM, Adams MWW (1993) Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeonPyrococcus furiosus. Biochim Biophys Acta 1161:19–27

    Google Scholar 

  • Cabot EL, Beckenbach AT (1989) Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Appl Biosci 5:233–234

    Google Scholar 

  • Cammack R, Kerscher L, Oesterhelt D (1980) A stable free radical intermediate in the reaction of 2-oxoacid:ferredoxin oxidoreductases ofHalobacterium halobium. FEBS Lett 118:271–273

    Google Scholar 

  • Cannon M, Cannon F, Buchanan-Wollaston V, Alley D, Alley A, Beynon J (1988) The nucleotide sequence of thenifJ gene ofKlebsiella pneumoniae. Nucleic Acids Res 16:11379

    Google Scholar 

  • Chapman A, Cammack R, Linstead DJ, Lloyd D (1986) Respiration ofTrichomonas vaginalis. Components detected by electron paramagnetic resonance spectroscopy. Eur J Biochem 156:193–198

    Google Scholar 

  • Coombs GH North MJ (1983) An analysis of the proteinases ofTrichomonas vaginalis by polyacrylamide gel electrophoresis. Parasitology 86:1–6

    Google Scholar 

  • Docampo R, Moreno SNJ, Mason RP (1987) Free radical intermediates in the reaction of pyruvateferredoxin oxidoreductase inTritrichomonas foetus hydrogenosomes. J Biol Chem 262:12417–12420

    Google Scholar 

  • Dore J, Stahl DA (1991) Phylogeny of anaerobic rumen Chytridiomycetes inferred from small subunit ribosomal RNA sequence comparisons. Can J Bot 69:1964–1971

    Google Scholar 

  • Embley TM, Finlay BJ (1994) The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 140:225–235

    Google Scholar 

  • Fenchel T, Finlay BJ (1991) The biology of free-living anaerobic ciliates. Eur J Protistol 26:201–215

    Google Scholar 

  • Gorrell TE, Yarlett N, Müller M (1984) Isolation and characterization ofTrichomonas vaginalis ferredoxin. Carlsberg Res Commun 49:259–268

    Google Scholar 

  • Hawkins CF, Borges A, Perham RN (1989) A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett 255:77–82

    Google Scholar 

  • Higgins DG (1994) CLUSTAL V: multiple alignment of DNA of protein sequences. Methods Mol Biol 25:307–318

    Google Scholar 

  • Hrdý I, Mertens E (1993) Purification and partial characterization of malate dehydrogenase (decarboxylating) fromTritrichomonas foetus hydrogenosomes. Parasitology 107:379–385

    Google Scholar 

  • Hrdý I, Müller M (1995) Primary structure of the hydrogenosomal malic enzyme ofTrichomonas vaginalis and its relationship to homologous enzymes. J Eukar Microbiol (in press)

  • Inui H, Miyatake K, Nakano Y, Kitaoka S (1984) Occurrence of oxygen-sensitive, NADP+-dependent pyruvate dehydrogenase in mitochondria ofEuglena gracilis. J Biochem 96:931–934

    Google Scholar 

  • Inui H, Ono K, Miyatake K, Nakano Y, Kitaoka S (1987) Purification and characterization of pyruvate:NADP+ oxidoreductase inEuglena gracilis. J Biol Chem 262:9130–9135

    Google Scholar 

  • Johnson PJ, d'Oliveira CE, Gorrell TE, Müller M (1990) Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist,Trichomonas vaginalis. Proc Natl Acad Sci USA 87:6097–6101

    Google Scholar 

  • Johnson PJ, Lahti CJ, Bradley PJ (1993) Biogenesis of the hydrogenosome in the anaerobic protistTrichomonas vaginalis. J Parasitol 79:664–670

    Google Scholar 

  • Kerscher L, Oesterhelt D (1981) The catalytic mechanism of 2-oxoacid:ferredoxin oxidoreductases fromHalobacterium halobium. One-electron transfer at two distinct steps of the catalytic cycle. Eur J Biochem 116:595–600

    Google Scholar 

  • Kerscher L, Oesterhelt D (1982) Pyruvate:ferredoxin oxidoreductase new findings on an ancient enzyme. Trends Biochem Sci 7:371–374

    Google Scholar 

  • Kreutzer R, Dayananda S, Klingmuller W (1991) Cotranscription of the electron transport protein genesnifJ andnifF inEnterobacter agglomerans 333. J Bacteriol 173:3252–3256

    Google Scholar 

  • Lahti CJ, d'Oliveira CE, Johnson PJ (1992) β-Succinyl-coenzyme A synthetase fromTrichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. J Bacteriol 174:6822–6830

    Google Scholar 

  • Lahti CJ, Bradley PJ, Johnson PJ (1994) Molecular characterization of the α-subunit ofTrichomonas vaginalis hydrogenosomal succinyl CoA synthetase. Mol Biochem Parasitol 66:309–318

    Google Scholar 

  • Länge S, Rozario C, Müller M (1994) Primary structure of the hydrogenosomal adenylate kinase ofTrichomonas vaginalis and its phylogenetic relationships. Mol Biochem Parasitol 66:297–308

    Google Scholar 

  • Leipe DD, Gunderson JH, Nerad TA, Sogin ML (1993) Small subunit ribosomal RNA+ ofHexamita infata and the quest for the first branch in the eukaryotic tree. Mol Biochem Parasitol 59:41–48

    Google Scholar 

  • Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate,Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728

    Google Scholar 

  • Lindmark DG, Müller M, Shio H (1975) Hydrogenosomes inTrichomonas vaginalis. J Parasitol 61:552–554

    Google Scholar 

  • Lindmark DG (1980) Energy metabolism of the anaerobic protozoonGiardia lamblia. Mol Biochem Parasitol 1:1–12

    Google Scholar 

  • Mai X, Adams MWW (1994) Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeonPyrococcus furiosus. A new enzyme involved in peptide fermentation. J Biol Chem 269:16726–16732

    Google Scholar 

  • Markoš A, Miretsky A, Müller M (1993) A glyceraldehyde 3-phosphate dehydrogenase with eubacterial features in the amitochondriate eukaryote,Trichomonas vaginalis. J Mol Evol 37:631–643

    Google Scholar 

  • Mendis AHW, Schofield PJ (1994) Discussants report: giardia biochemistry. In: Thompson RCA, Reynoldson JA, Lymbery AJ (eds) Giardia: from molecules to disease. CAB International, Wallingford, UK, pp 205–213

    Google Scholar 

  • Müller M (1988) Energy metabolism of protozoa without mitochondria. Annu Rev Microbiol 42:465–488

    Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889

    Google Scholar 

  • Payne MJ, Chapman A, Cammack R (1993) Evidence for an [Fe]-type hydrogenase in the parasitic protozoanTrichomonas vaginalis. FEBS Lett 317:101–104

    Google Scholar 

  • Philippe H (1993) MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res 21:5264–5272

    Google Scholar 

  • Plaga W, Lottspeich F, Oesterhelt D (1992) Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase fromHalobacterium halobium. Eur J Biochem 205:391–397

    Google Scholar 

  • Quon DVK, Delgadillo MG, Khachi A, Smale ST, Johnson PJ (1994) Similarity between a ubiquitous promoter element in an ancient eukaryote and mammalian initiator elements. Proc Natl Acad Sci USA 91:4579–4583

    Google Scholar 

  • Reed LJ (1974) Multienzyme complexes. Acc Chem Res 7:40–46

    Google Scholar 

  • Reeves RE, Warren LG, Susskind B, Lo H-S (1977) An energy conserving pyruvate-to-acetate pathway inEntamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J Biol Chem 252:726–731

    Google Scholar 

  • Reeves RE (1984) Metabolism ofEntamoeba histolytica Schaudinn, 1903. Adv Parasitol 23:105–142

    Google Scholar 

  • Smith ET, Blarney JM, Adams MWW (1994) Pyruvate ferredoxin oxidoreductases of the hyperthermophilic archaeon,Pyrococcus furiosus, and thehyperthermophilic bacterium,Thermotoga maritima, have different catalytic mechanisms. Biochemistry 33:1008–1016

    Google Scholar 

  • Sogin ML (1991) Early evolution and the origin of eukaryotes. Curr Opin Gen Dev 1:457–463

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    Google Scholar 

  • Van Hejine G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180:535–545

    Google Scholar 

  • Viscogliosi E, Philippe H, Baroin A, Perasso R, Brugerolle G (1993) Phylogeny of trichomonads based on partial sequences of large subunit rRNA and on cladistic analysis of morphological data. J Eukar Microbiol 40:411–421

    Google Scholar 

  • Wahl RC, Orme-Johnson WH (1987) Clostridial pyruvate oxidoreductase and the pyruvate-oxidizing enzyme specific for nitrogen fixation inKlebsiella pneumoniae are similar enzymes. J Biol Chem 262:10489–10496

    Google Scholar 

  • Whatley JM, John P, Whatley FR (1979) From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc R Soc Lond [Biol] 204:165–187

    Google Scholar 

  • Wieland OH (1983) The mammalian pyruvate dehydrogenase complex: structure and regulation. Rev Biochem Physiol Pharmacol 96:123–170

    Google Scholar 

  • Williams K, Lowe PN, Leadlay PF (1987) Purification and characterization of pyruvate:ferredoxin oxidoreductase from the anaerobic protozoonTrichomonas vaginalis. Biochem J 246:529–536

    Google Scholar 

  • Yarlett N, Hann AC, Lloyd D, Williams A (1981) Hydrogenosomes in the rumen protozoonDasytricha ruminantium Schuberg. Biochem J 200:365–372

    Google Scholar 

  • Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungusNeocallimastix patriciarum. Biochem J 236:729–739

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: M. Müller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrdý, I., Müller, M. Primary structure and eubacterial relationships of the pyruvate:Ferredoxin oxidoreductase of the amitochondriate eukaryoteTrichomonas vaginalis . J Mol Evol 41, 388–396 (1995). https://doi.org/10.1007/BF01215186

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01215186

Key words

Navigation