Skip to main content
Log in

Applications of caterpillar trees in chemistry and physics

  • Review
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The relations of caterpillar trees (which are also known as Gutman trees and benzenoid trees) to other mathematical objects such as polyhex graphs, Clar graphs, king polyominos, rook boards and Young diagrams are discussed. Potential uses of such trees in data reduction, computational graph theory, and in the ordering of graphs are considered. Combinatorial and physical properties of benzenoid hydrocarbons can be studied via related caterpillars. It thus becomes possible to study the properties of large graphs such as benzenoid (i.e. polyhex) graphs in terms of much smaller tree graphs. Generation of the cyclic structures of wreath and generalized wreath product groups through the use of caterpillar trees is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Harary and A.J Schwenk, Discrete Math. 6 (1973)359.

    Google Scholar 

  2. Ref. [1],p. 361.

  3. F. Harary and A.J. Schwenk, Mathematika 18 (1971)138.

    Google Scholar 

  4. F. Harary and A.J. Schwenk, Utilitas Math. 1 (1972)203.

    Google Scholar 

  5. I. Gutman, Theor. Chim. Acta 45 (1977)309.

    Google Scholar 

  6. S. El-Basil, J. Chem. Soc., Faraday Trans. 2, 82 (1986)299.

    Google Scholar 

  7. S. El-Basil, Theor. Chim. Acta 65 (1984)199.

    Google Scholar 

  8. S. El-Basil, Theor. Chim. Acta 65 (1984)191.

    Google Scholar 

  9. Ordering of structures has been explicitly considered in both the mathematical and chemical literature. Thus, J.F. Nagle, J. Math. Phys. 7(1966)J88. considered a general linear ordering relation for graphs with the same number of vertices, while E. Ruch, Theor. Chim. Acta 38(1975)167, considered ordering of Young diagrams. M. Randić and C.L. Wilkins, Chem. Phys. Lett. 63(1979)332; J. Phys. Chem. 83(1979)1525, considered ordering of alkanes and how it reflects on their physical properties.

  10. Here, the termdata reduction means studying the properties of a large molecule in terms of those of a smaller one (see refs. [4041]).

  11. The term polyhex graphs means the molecular graph of a benzennid hydroearbon. This term was bu used in: N. Ohkami. A. Motoyama, T. Yamaguchi, H. Hosoya and I. Gutman,Tetrahedron 37(1981)1113.

  12. A recent account mar be found in: N. Trinajstić,Chemical Graph Theory, Vol. 2 (CRC Boca Raton, Florida, 1983)

    Google Scholar 

  13. Cf. H. Sachs,Combinatozioa4, 1 (1984)89.

    Google Scholar 

  14. C. Domb and M.S. Green,Phase Transitions and Critical Phenomena, Vols. 1–3, ed. M.S. Green (Academic Press, London, 1972).

    Google Scholar 

  15. I. Gutman, Z. Naturforsch. a37 (1982)69.

    Google Scholar 

  16. I. Gutman and S. EI-Basil, Z. Naturforsch. a39 (1984)276.

    Google Scholar 

  17. Line graphs are defined in: F. Hamry,Graph Theory (Addison-Wesley, Reading, 1969)Ch. 8.

  18. King polyomino graphs were first defined in: A. Motoyama and H. Hosoya, J. Math. Phys. 18 (1977)1485.

    Google Scholar 

  19. Cf. C.D. Godsil and I. Gutman, Croat. Chem. Acta 54 (1981)53.

    Google Scholar 

  20. A bipartite graph (bigraph bicolarable graph)G is a graph whose vertex setV can be partitioned into two subsetsV 1 andV 2 such that every line ofG joinsV 1 withV 2 (see ref. [14], p. 17).

  21. D. Hosoya, Bull. Chem. Soc. Japan 44 (1971)2332.

    Google Scholar 

  22. H. Hosoya and T. Yamaguchi, Tetrahedron Lett. (1975) 4659.

  23. N. Ohkami and H. Hosoya, Theor. Chim. Acta 64 (1983)153.

    Google Scholar 

  24. Generating functions are defined in books on combinatorics: V. Krishnamurthy,Combinatorics: Theory and Applications (E. Horwood, New York, Halsted Press, 1986). The sextet polynomial [21] is a very special form of generating functions which generate all possible ways in which one can perfectly match [10] the edges of a polyhex graph [8].

  25. A recent generalized approach to structure count is found in: B. Ruščić, N. Trinajstić and P. Křivka, Theor. Chim. Acta 69 (1986)107.

    Google Scholar 

  26. One of the earliest works pertaining to chemical combinatorics is that of: M. Gordon and W.T. Davison, J. Chem. Phys. 20 (1952)428.

    Google Scholar 

  27. Proper and improper sextets are defined in ref. [22] .

  28. H. Hosoya and N. Ohkami, J. Comput. Chem. 4 (1983)585.

    Google Scholar 

  29. E. Heilbronner, Helv. Chim. Acta 36 (1953)171.

    Google Scholar 

  30. Details of some aspects of Clar sextet theory may be found in: I. Gutman, Bull. Soc. Chim. Beograd 47 (1982)453.

    Google Scholar 

  31. J. Aihara, Bull. Chem. Soc. Japan 49 (1976)1429.

    Google Scholar 

  32. A0 “Dewar-type” resonance theory depends on the concept of a reference structure: M.J.S. Dewar and C. de Llano, J. Amer. Chem. Soc. 91 (1969)789.

    Google Scholar 

  33. I. Gutman, Croat. Chem. Acta 56 (1983)365.

    Google Scholar 

  34. M. Randić, J. Amer. Chem. Soc. 99 (1977)444; Tetrahedron 33(1977)1905.

    Google Scholar 

  35. W.C. Herndon and M.L. Ellzey, Jr., J. Amer. Chem. Sac. 96 (1974)6631.

    Google Scholar 

  36. K. Balasubramanian and M. Randić, Theor. Chim. Acta 61 (1982)307; see also K. Balasubramanian, Int. J. Quantum Chem. 22(1982)581.

    Google Scholar 

  37. I. Gutman and M. Randić, Chem. Phys. Lett. 47 (1977)15.

    Google Scholar 

  38. G.H. Hardy, J.E. Littlewood and G. Pólya,Inequalities (Cambridge University Press, London, 1934) p. 44.

    Google Scholar 

  39. E. Ruch, Theor. Chim. Acta 38 (1975)167; E. Ruch and A. Schönhofer, Theor. Chim. Acta 19(1970)225.

    Google Scholar 

  40. A. Smolenskii, Russ. J. Phys. Chem. (English translation) 38 (1964)700.

    Google Scholar 

  41. M. Gordon and J.W. Kennedy, J. Chem. Soc., Faraday Trans. 2, 68 (1972)484.

    Google Scholar 

  42. A.T. Balaban and F. Harary, Tetrahedron 24 (1968)2505.

    Google Scholar 

  43. S. El-Basil, Chem. Phys. Lett. (1987), in press.

  44. M. Randić, J. Amer. Chem. Soc. 97 (1975)6609.

    Google Scholar 

  45. F. Harary,Graph Theory (Addison-Wesley, Reading, 1969) p. 164.

  46. K. Balasubramanian, Chem. Rev. 85 (1985)599; and numerous references cited therein.

    Google Scholar 

  47. G. Pólya, Acta Math. 65 (1937)145.

    Google Scholar 

  48. K. Balasubramanian, Studies in Physical and Theoretical Chemistry 23 (1982)149.

    Google Scholar 

  49. K. Balasubramanian, Theor. Chim. Acta 51 (1979)37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Basil, S. Applications of caterpillar trees in chemistry and physics. J Math Chem 1, 153–174 (1987). https://doi.org/10.1007/BF01205666

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01205666

Keywords

Navigation