Skip to main content
Log in

Generalized molecular descriptors

  • Chemical Properties and QSAR
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We review algebraic characterizations of molecular structures and in particular consider different matrices associated with a molecule as a source of novel graph invariants for use in structure-property and structure-activity studies. Such matrices can be classified as structure-explicit, structure-cryptic, and structure-implicit corresponding to a previous classification of molecular descriptors. In order to tame the proliferation of unwarranted topological indices, we propose requirements on indices and on the “source” matrices used for construction of molecular descriptors. Several structure-explicit and structure-implicit matrices are illustrated. A novel bond descriptorP′/P defined by the ratio of the number of paths in a graph G′, in which an edge is erased, and in the parent graphG′ is introduced. The derived bond-additive molecular P'/P index, which correlates well with the octane numbers in octanes, was found to be linearly related to the Wiener numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I.I. Baskin, E.V. Gordeeva, R.O. Devdariani, N.S. Zefirov, V.A. Palyulin and M.I. Stankevich, Doklady Akad. Nauk. SSSR 307 (1989)613.

    Google Scholar 

  2. J.V. Knop, W.R. Müller, Z. Jericvić and N. Trinajstić, J. Chem. Inf. Comput. Sci. 21 (1981)91.

    Google Scholar 

  3. M. Randić, J. Chem. Inf. Comput. Sci. 26 (1986)136.

    Google Scholar 

  4. M. Randić, J. Chem. Inf. Comput. Sci. 17 (1977)171.

    Google Scholar 

  5. R.C. Read, in:Graph Theory and Computing, ed. R.C. Read (Academic Press, New York, 1972), p. 153.

    Google Scholar 

  6. R.C. Read, J. Chem. Inf. Comput. Sci. 23 (1983)135.

    Google Scholar 

  7. H. Hosoya, Bull. Chem. Soc. Japan 44 (1971)2332.

    Google Scholar 

  8. M. Randić, J. Amer. Chem. Soc. 97 (1975)6609.

    Google Scholar 

  9. H. Wiener, J. Amer. Chem. Soc. 69 (1947)17.

    Google Scholar 

  10. J.R. Platt, J. Phys. Chem. 56 (1952)328.

    Google Scholar 

  11. M. Randić, and N. Trinajstić, Theor. Chim. Acta 73 (1988)233;

    Google Scholar 

  12. Y. Miyashita, T. Okuyama, H. Ohsako and S. Sasaki, J. Amer. Chem. Soc. 111 (1989)3469.

    Google Scholar 

  13. Y. Miyashita, H. Ohsako, T. Okuyama, S. Sasaki and M. Randić, Magn. Res. Chem., submitted.

  14. D.H. Rouvray, in:Mathematics and Computational Concepts in Chemistry, ed. N. Trinajstić (Ellis Horwood, Chichester, 1986), ch. 25.

    Google Scholar 

  15. M. Randić, and P.G. Seybold, J. Amer. Chem. Soc., submitted.

  16. M. Randić, J. Chem. Inf. Comput. Sci., in press.

  17. M. Randić, New J. Chem., in press.

  18. M. Randić, Croat. Chem. Acta, in press.

  19. J.H. Van Vleck, Science 201 (1978)113.

    Google Scholar 

  20. L.B. Kier, W.J. Murray, M. Randić, and K.H. Hall, J. Pharm. Sci. 65 (1976)1226;

    Google Scholar 

  21. L.B. Kier and L.H. Hall,Molecular Connectivity in Chemistry and Drug Research (Academic Press, New York, 1976).

    Google Scholar 

  22. M. Randić, Int. J. Quant. Chem.: Quant. Biol. Symp. 11 (1984)137.

    Google Scholar 

  23. P.A. Filip, T.-S. Balaban and A.T. Balaban, J. Math. Chem. 1 (1987)61.

    Google Scholar 

  24. N. Trinajstić, M. Randić, and D.J. Klein, Acta Pharm. Jugosl. 36 (1986)267.

    Google Scholar 

  25. E.B. Wilson, J.C. Decius and P.C. Cross,Molecular Vibrations (McGraw-Hill, New York, 1955), ch. 8, pp. 169–231.

    Google Scholar 

  26. J. Dugundji and I. Ugi, Topics Curr. Chem. 39 (1973)19.

    Google Scholar 

  27. E. Heilbronner, Helv. Chim. Acta 45 (1962)1722.

    Google Scholar 

  28. C.A. Coulson and A. Streitwieser,Dictionary of Pi-Electron Calculations (Pergamon, Oxford, 1965).

    Google Scholar 

  29. W.T. Tutte,Graph Theory, Encyclopedia of Mathematics, Vol. 21 (Addison-Wesley, Menlo Park, CA, 1984), section 6.4, p. 138. In mathematical literature, it is also referred to as a Laplace matrix.

    Google Scholar 

  30. G. Kirchhoff (translation), IRE Trans. Circuit Theory 5 (1958)4.

    Google Scholar 

  31. O. Mekenyan, D. Bonchev and A.T. Balaban, J. Math. Chem. 2 (1988)347.

    Google Scholar 

  32. M. Randić,MATH/CHEM/COMP 1987, ed. R.C. Lacher, Studies in Phys. Theor. Chem. 54(1988)101;

  33. M. Randić, Int. J. Quant. Chem.: Quant. Biol. Symp. 15 (1988)201;

    Google Scholar 

  34. M. Randić, B. Jerman-Blazic and N. Trinajstić, Comput. Chem. 14 (1990)237.

    Google Scholar 

  35. A.A. Balandin, Uspekhi Khem. 9 (1940)390.

    Google Scholar 

  36. C.A. Coulson,Valence (Oxford University Press, 1952).

  37. L. Pauling,The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1960).

    Google Scholar 

  38. M. Randić, Int. J. Quant. Chem. 8 (1974)643.

    Google Scholar 

  39. M. Randić, and S. Borcić, J. Chem. Soc. (1967)596.

  40. A.T. Balaban and I. Motoc, MATCH 5 (1979)197.

    Google Scholar 

  41. A.T. Balaban, Theor. Chim. Acta 53 (1979)355.

    Google Scholar 

  42. A.F. Kleiner and M. Randić, work in progress.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dennis H. Rouvray, one of the foremost promoters of chemical graph theory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randić, M. Generalized molecular descriptors. J Math Chem 7, 155–168 (1991). https://doi.org/10.1007/BF01200821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200821

Keywords

Navigation