Skip to main content
Log in

Building pseudoprimes with a large number of prime factors

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We extend the method due originally to Löh and Niebuhr for the generation of Carmichael numbers with a large number of prime factors to other classes of pseudoprimes, such as Williams's pseudoprimes and elliptic pseudoprimes. We exhibit also some new Dickson pseudoprimes as well as superstrong Dickson pseudoprimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alford, W. R., Granville, A., Pomerance, C.: There are infinitely many Carmichael numbers. Ann. Math.139(3), 703–722 (May 1994)

    Google Scholar 

  2. Bedocchi, E.: Note on a conjecture on prime numbers. Rev. Math. Univ. Parma4(11), 229–236 (1985)

    Google Scholar 

  3. Brillhart, J., Lehmer, D. H., Selfridge, J. L.: New primality criteria and factorizations of 2m+-1. Math. Comp.29(130), 620–647 (1975)

    Google Scholar 

  4. Carmichael, R. D.: Note on a new number theory function. Bull AMSXVI, 232–238 (1910)

    Google Scholar 

  5. Carmichael, R. D.: On composite numbersP which satisfy the fermat congruence ap−1≡1 mod P. Am. Math. MonthlyXIX, 22–27 (1912)

    Google Scholar 

  6. Chernick, J.: On Fermat's simple theorem. Bull. AMS45, 269–274 (Apr. 1939)

    Google Scholar 

  7. Cohen, G. L., Hagis, Jr, P.: On the number of prime factors ofn if ø(n)¦(n−1). Nieuw Archief voor Wiskunde (3)XXVIII, 177–185 (1980)

    Google Scholar 

  8. Dickson, L. E.: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group I. Ann. Math.11, 65–120 (1896)

    Google Scholar 

  9. Dubner, H.: A new method for producing large Carmichael numbers. Math. Comp.53(187), 411–414 (July 1989)

    Google Scholar 

  10. Erdös, P., Pomerance, C., Schmutz, E.: Carmichael's lambda function. Acta Arithmetica LVIII, 4, 363–385 (1991)

    Google Scholar 

  11. Giuga, G.: Su una presumbile proprietà caratteristica dei numeri primi. Ist. Lombardo Sci. Lett. Rend. Cl. Sci. Nat. 3,14(83), 511–528 (1950)

    Google Scholar 

  12. Gordon, D. M.: On the number of elliptic pseudoprimes. Math. Comp.52(185), 231–245 (Jan. 1989)

    Google Scholar 

  13. Gordon, D. M., Pomerance, C.: The distribution of Lucas and elliptic pseudoprimes. Math. Comp.57(196), 825–838 (Oct. 1991)

    Google Scholar 

  14. Guillaume, D., Morain, F.: Building Carmichael numbers with a large number of prime factors. Research Report LIX/RR/92/01, Ecole Polytechnique-LIX, Feb. 1992

  15. Guillaume, D., Morain, F.: Building Carmichael numbers with a large number of prime factors and generalization to other numbers. Research Report 1741, INRIA, Aug. 1992

  16. Jaeschke, G.: The Carmichael numbers to 1012. Math. Comp.55(191), 383–389 (July 1990)

    Google Scholar 

  17. Keller, W.: The Carmichael numbers to 1013. AMS Abstracts9, 328–329 (1988), Abstract 88T-11-150

    Google Scholar 

  18. Kishore, M.: On the number of district prime factors of n for which ø(n)¦n−1. Nieuw Archief voor Wiskunde (3)XXV, 48–53 (1977)

    Google Scholar 

  19. Kowol, G.: On strong Dickson pseudoprimes. AAECC3, 129–138 (1992)

    Google Scholar 

  20. Lausch, H., Nöbauer, W.: Algebra of polynomials. North Holland, Amsterdam 1973

    Google Scholar 

  21. Lehmer, D. H.: An extended theory of Lucas' functions. Ann. Math.31, 419–448 (1930). Series (2)

    Google Scholar 

  22. Lehmer, D. H.: On Euler's totient function. Bull. AMS38, 745–751 (1932)

    Google Scholar 

  23. Lidl, R., Mullen, G. L., Turnwald, G.: Dickson polynomials, vol. 65 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, 1993

  24. Lidl, R., Müller, W. B.: Primality testing with Lucas functions. In: Auscrypt '92 (1992), vol. 718 of Lect. Notes in Computer Science, Berlin, Heidelberg, New York: Springer, pp. 539–542

    Google Scholar 

  25. Lidl, R., Müller, W. B., Oswald, A.: Some remarks on strong Fibonatci pseudoprimes. AAECC1, 59–65 (1990)

    Google Scholar 

  26. Lieuwens, E.: Do there exist composite numbersM for which kø(M)=M −1 holds? Nieuw Archief voor Wiskunde (3)XVIII, 165–169 (1970)

    Google Scholar 

  27. Löh, G.: Carmichael numbers with a large number of prime factors. AMS Abstracts9, 329. Abstract 88T-11-151 (1988)

    Google Scholar 

  28. Löh, G., Niebuhr, W.: Carmichael numbers with a large number of prime factors, II. AMS Abstracts10, 305 (1989), Abstract 89T-11-131

    Google Scholar 

  29. Nicolas, J.-L.: On highly composite numbers. In: Ramanujan revisited (1988). Andrews, G., Askey, R., Berndt, B., Ramanathan, K., Rankin, R. (eds.) New York, London: Academic Press, pp. 215–244

    Google Scholar 

  30. Pinch, R.: The Carmichael numbers to 1015. Math. Comp.61(203), 381–392 (July 1993)

    Google Scholar 

  31. Pinch, R.: The pseudoprimes up to 1013. Preprint, 1995

  32. Pomerance, C., Selfridge, J. L., Wagstaff, Jr, S. S.: The pseudoprimes to 25.109. Math. Comp.35(151), 1003–1026 (1980)

    Google Scholar 

  33. Porto, A. D., Filipponi, P.: A probabilistic primality test based on the properties of certain generalized Lucas numbers. In: Advances in Cryptology — EUROCRYPT '88 (1988), Günther, C. G. (ed.), vol. 330 of Lect. Notes in Computer Science. Berlin, Heidelberg, New York, Springer, pp. 211–223

    Google Scholar 

  34. Ramanujan, S.: Highly composite numbers. Proc. London Math. Soc.2(14), 347–409 (1915)

    Google Scholar 

  35. Ribenboim, P.: The book of prime number records, 2nd ed. Berlin, Heidelberg, New York, Springer 1989

    Google Scholar 

  36. Riessei, H.: Prime numbers and computer methods for factorization, 2nd ed., vol. 57 of Progress in Mathematics. Basel: Birkhäuser 1985

    Google Scholar 

  37. Wagstaff, S. S. Jr: Large Carmichael numbers. Math. J. Okayama Univ.22, 33–41 (1980)

    Google Scholar 

  38. Williams, H. C.: On number analogous to the Carmichael numbers. Canadian Math. Bull.20(1), 133–143 (1977)

    Google Scholar 

  39. Woods, D., Huenemann, J.: Larger Carmichael numbers. Comp. Math. Appls.8(3), 215–216 (1982)

    Google Scholar 

  40. Yorinaga, M.: Numerical computation of Carmichael numbers. Math. Okayama University20(2), 151–163 (1978)

    Google Scholar 

  41. Yorinaga, M.: Carmichael numbers with many prime factors. J. Okayama Univ.22, 169–184 (1980)

    Google Scholar 

  42. Zhang, M.: Searching for large Carmichael numbers. Sichuan Daxue Xuebao, Dec. 1991. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the French Department of Defense, Délégation Générale pour l'Armement

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillaume, D., Morain, F. Building pseudoprimes with a large number of prime factors. AAECC 7, 263–277 (1996). https://doi.org/10.1007/BF01195532

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01195532

Keywords

Navigation