Skip to main content
Log in

Equivalent source estimation of scalp potential fields contaminated by heteroscedastic and correlated noise

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

The customary ordinary least squares (OLS) approach to the estimation of equivalent sources of scalp potential fields relies on the assumption that noise in the potential measurements has an equal variance and is uncorrelated over leads. It is shown that this assumption is likely to be violated in practice, for instance by the use of a common reference lead. We describe tests to detect these violations and we propose several versions of an alternative estimation method called iterated generalised least squares (IGLS), which accounts for heteroscedastic or correlated noise by incorporating an estimate of the covariance matrix of the noise derived from single trial OLS residuals. Simulation results indicate that these alternatives give a considerable increase in the accuracy of both the parameter and the standard error and confidence interval estimates. The proposed tests and methods are finally integrated into a stepwise approach to equivalent source estimation, which incorporates in addition a test on the goodness of fit of the model, an assessment of the confidence intervals of the parameters and a powerful test of differences between experimental conditions. This stepwise approach is applied to the modelling of equivalent sources of early visual potentials elicited in a spatial attention task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, T.W. An introduction to multivariate statistical analysis. New York, Wiley, 1958.

    Google Scholar 

  • Ary, J.P., Klein, S.A. and Fender, D.H. Location of sources of evoked scalp potentials: corrections for skull and scalp thicknesses. IEEE Trans. Biomed. Eng., 1981, 28(6): 447–452.

    Google Scholar 

  • Carrol, R.J. and Ruppert, D. Transformation and weighting in regression. New York, Chapman and Hall, 1988.

    Google Scholar 

  • Cuffin, B.N. Effects of measurement errors and noise on MEG moving dipole inverse solutions. IEEE Trans. Biomed. Eng., 1986, 33(9): 854–861.

    Google Scholar 

  • Cuffin, B.N. Effects of local variations in skull and scalp thickness on EEG's and MEG's. IEEE Trans. Biomed. Eng., 1993, 40(1): 42–48.

    Google Scholar 

  • De Munck, J.C. The estimation of time varying dipoles on the basis of evoked potentials. Electroencephalogr. Clin. Neurophysiol., 1990, 77: 156–160.

    Google Scholar 

  • De Munck, J.C., van Dijk, B.W. and Spekreijse, H. Mathematical dipoles are adequate to describe realistic generators of human brain activity. IEEE Trans. Biomed. Eng., 1988, 35(11): 960–966.

    Google Scholar 

  • De Munck, J.C., Vijn, P.C.M. and Spekreijse, H. A practical method for determining electrode positions on the head. Electroencephalogr. Clin. Neurophysiol., 1991, 78: 85–87.

    Google Scholar 

  • De Munck, J.C., Vijn, P.C.M. and Lopez da Silva, F.H. A random dipole model for spontaneous brain activity. IEEE Trans. Biomed. Eng., 1992, 39(8): 791–804.

    Google Scholar 

  • Draper, N.R. and Smith, H. Applied Regression Analysis. New York, Wiley, 1966.

    Google Scholar 

  • Funahashi, S., Bruce, C.J. and Goldman-Rakic, P.S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol., 1989, 61(2): 331–349.

    Google Scholar 

  • Gallant, A.R. and Goebel, J.J. Nonlinear regression with autocorrelated errors. Journal of the American Statistical Association, 1976, 71(356): 961–967.

    Google Scholar 

  • Haenny, P.E. and Schiller, P.H. State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Experimental Brain Research, 1988, 69: 225–244.

    Google Scholar 

  • Healy, M.J.R. Triangular decomposition of a symmetric matrix. Applied Statistics, 1968, 17: 195.

    Google Scholar 

  • Huizenga, H.M. and Molenaar, P.C.M. Estimating and testing the sources of evoked potentials in the brain. Multivariate Behavioral Research, 1994, 29(3): 237–262.

    Google Scholar 

  • Kandel, E.R. Perception of motion, depth, and form. In: E.R. Kandel, J.H. Schwartz and T.H. Jessel (Eds.), Principles of Neural Science. Norwalk, Appleton and Lange, 1991.

    Google Scholar 

  • Law, S.K., Nunez, P.L. and Wijesinghe, R.S. High-resolution EEG using spline generated surface Laplacians on spherical and ellipsoidal surfaces. IEEE Trans. Biomed. Eng., 1993, 40(2): 145–153.

    Google Scholar 

  • Mangun, G.R., Hillyard, S.A. and Luck, S.J. Electrocortical substrates of visual selective attention. In: D. Meyer and S. Kornblum (Eds.), Attention and Performance XIV, Erlbaum, Hillsdale NJ, 1993.

    Google Scholar 

  • McGillem, C.D. and Aunon, J.I. Analysis of event related potentials. In: A.S. Gevins and A.S. Remond (Eds.), Methods of Analysis of Brain Electric and Magnetic Signals. Amsterdam, Elseviers science publishers, 1987.

    Google Scholar 

  • Moran, J. and Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science, 1985, 229: 782–784.

    Google Scholar 

  • Nunez, P.L. Electric Fields of the Brain. New York, Oxford university press, 1981.

    Google Scholar 

  • Oakley, M.T. and Eason, R.G. The cojoint influence of spatial selective attention and motor set on very short latency VERs. Neuropsychologica, 1990, 28(5): 487–497.

    Google Scholar 

  • Ossenblok, P. and Spekreijse, H. The extrastriate generators of the EP to checkerboard onset. A source localization approach. Electroencephalogr. Clin. Neurophysiol., 1991, 80: 181–193.

    Google Scholar 

  • Pellizone, M. and Hari, R. Interpretation of neuromagnetic responses: two simple models for extended current sources in the human auditory cortex. Acta. Otolaryngol., 1986, Suppl. 432: 15–20.

    Google Scholar 

  • Pernier, J., Perrin, F. and Bertrand, O. Scalp current density fields: concept and properties. Electroencephalogr. Clin. Neurophysiol., 1988, 69: 385–389.

    Google Scholar 

  • Perrin, F., Bertrand, O. and Pernier, J. Scalp current density mapping: value and estimation from potential data. IEEE Trans. Biomed. Eng., 1987, 34(4): 283–288.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. Numerical Recipes. Cambridge, University press, 1989.

    Google Scholar 

  • Pritchard, D.J., Downie, J. and Bacon, D.W. Further consideration of heteroscedasticity in fitting kinetic models. Technometrics, 1977, 19(3): 227–236.

    Google Scholar 

  • Raz, J., Biggins, C.A., Turetsky, B. and Fein, G. Frequency domain dipole localization: extensions of the method and applications to auditory and visual evoked potentials. IEEE Trans. Biomed. Eng., 1993, 40(9): 909–918.

    Google Scholar 

  • Raz, J., Turetsky, B. and Fein, G. Frequency domain estimation of the parameters of human brain electrical dipoles. Journal of the American Statistical Association, 1992, 87(417): 69–77.

    Google Scholar 

  • Richmond, B.J. and Sato, T. Enhancement of inferior temporal neurons during visual discrimination. J. Neurophysiol., 1987, 58: 1292–1306.

    Google Scholar 

  • Ripley, B.D. Spatial Statistics. New York, Wiley, 1981.

    Google Scholar 

  • Roth, B.J., Balish, M., Gorbach, A. and Sato, S. How well does a three-sphere model predict positions of dipoles in a realistically shaped head? Electroencephalogr. Clin. Neurophysiol., 1993, 87: 175–184.

    Google Scholar 

  • Seber, G.A.F. and Wild, C.J. Nonlinear Regression. New York, Wiley, 1989.

    Google Scholar 

  • Scherg, M. and Von Cramon, D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol., 1985, 62: 32–44.

    Google Scholar 

  • Sekihara, K., Ogura, Y. and Hotta, M. Maximum-likelihood estimation of current-dipole parameters for data obtained using multichannel magnetometer. IEEE Trans. Biomed. Eng., 1992, 39(6): 558–562.

    Google Scholar 

  • Somsen, R.J.M., van Beek, B., Huizenga, H.M. and Molenaar, P.C.M. BM: A multifunctional EEG brain mapping program for the PC. In: F.J. Maarsse, A.E. Akkerman, A.N. Brand, L.J.M. Mulder and M.J. van de Stelt (Eds.), Computers in Psychology. Lisse, Swets and Zeitlinger, 1994.

    Google Scholar 

  • Srebro, R. and Purdy, P.D. Localization of visually evoked cortical activity using magnetic resonance imaging and computerized tomography. Vision Res., 1990, 30(3): 351–358.

    Google Scholar 

  • Stephens, M.A. EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 1974, 69(34): 730–737.

    Google Scholar 

  • Valdés, P., Bosch, J., Grave, J., Hernandez, J., Riera, J., Pascual, R. and Biscay, R. Frequency domain models of the EEG. Brain Topogr., 1992, 4(4): 309–319.

    Google Scholar 

  • Vijn, P.C.M., van Dijk, B.W., Spekreijse, H. Topography of occipital EEGreduction upon visual stimulation. Brain Topogr., 1992, 5(2): 177–181.

    Google Scholar 

  • Wilson, F.N. and Bayley, R.H. The electric field of an eccentric dipole in a homogeneous spherical conducting medium. Circulation., 1950, 1: 84–92.

    Google Scholar 

  • Wijers, A.A., Mulder, G., van Hooff, H., Lange, J., Peters, M.J. and Dunajski, Z. Topography and source analysis of brain activity associated with selective spatial attention and memory search. Brain Topogr., 1993, 5(4): 383–388.

    Google Scholar 

  • Worsley, K.J., Evans, A.C., Strother, S.C. and Tyler, J.L. A linear spatial correlation model, with applications to positron emission tomography. Journal of the American Statistical Association, 1991, 86(413): 730–737.

    Google Scholar 

  • Wurtz, R.H., Goldberg, M.E. and Robinson, D.L. Behavioral modulation of visual responses in the monkey: stimulus selection for attention and movement. Progress in Psychobiology and Physiological Psychology, 1980, 9: 43–83.

    Google Scholar 

  • Yamazaki, T., van Dijk, B.W. and Spekreijse, H. Confidence limits for the parameter estimation in the dipole localization method on the basis of spatial correlation of background EEG. Brain Topogr., 1992, 5 (2): 195–198.

    Google Scholar 

  • Zhang, Z. and Jewett, D.J. Insidious errors in dipole localization parameters at a single time-point due to model misspecification of number of shells. Electroencephalogr. Clin. Neurophysiol., 1993, 88: 1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilde M. Huizenga.

Additional information

The authors thank Berry Wijers and Johan Lange for providing the empirical data and for their helpful comments of on an earlier draft of the paper. They also thank Dirk Heslenfeld for helpful comments on an earlier draft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huizenga, H.M., Molenaar, P.C.M. Equivalent source estimation of scalp potential fields contaminated by heteroscedastic and correlated noise. Brain Topogr 8, 13–33 (1995). https://doi.org/10.1007/BF01187667

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01187667

Key words

Navigation