[1]

Barenblatt, G. I.: Similarity, self-similarity and intermediate asymptotics. New York: Consultants Bureau 1979.

[2]

Courant, R., Friedrichs, K. O.: Supersonic flow and shock waves. New York: Interscience 1948.

[3]

Schindler, G. M.: Simple waves in multidimensional gas flow. SIAM J. Appl. Math.**19**, 390–407 (1970).

[4]

Kalinowski, M. W., Grundland, A.: Simple waves for equation of potential, nonstationary flow of compressible gas. J. Math. Phys.**27**, 1906–1915 (1986).

[5]

Acheson, D. J.: The critical level for hydromagnetic waves in a rotating fluid. J. Fluid Mech.**53**, 401–415 (1972).

[6]

Rudraiah, N., Venkatachalappa, M.: Propagation of internal gravity waves in perfectly conducting fluids with shear flow, rotation and transverse magnetic field. J. Fluid Mech.**52**, 193–206 (1972).

[7]

Rudraiah, N., Venkatachalappa, M.: Propagation of Alfvén-gravitational waves in a stratified perfectly conducting flow with transverse magnetic field. J. Fluid Mech.**54**, 209–215 (1972).

[8]

Rudraiah, N., Venkatachalappa, M.: Momentum transport by gravity waves in a perfectly conducting shear flow. J. Fluid Mech.**54**, 217–240 (1972).

[9]

Rudraiah, N., Venkatachalappa, M.: Effect of Ohmic dissipation on internal Alfvén-gravity waves in a conducting shear flow. J. Fluid Mech.**62**, 705–726 (1974).

[10]

Rudraiah, N., Venkatachalappa, M.: Propagation of hydromagnetic waves in a perfectly conducting nonisothermal atmosphere in the presence of rotation and variable magnetic field. J. Fluid Mech.**89**, 785–792 (1979).

[11]

Grimshaw, R.: Internal gravity waves: critical layer absorption in a rotating fluid. J. Fluid Mech.**70**, 287–304 (1975).

[12]

Rudraiah, N., Venkatachalappa, M., Kandaswamy, P.: Propagation of internal Alfvén-acoustic-gravity waves in a perfectly conducting isothermal compressible fluid. J. Fluid Mech.**80**, 223–236 (1977).

[13]

Rudraiah, N., Venkatachalappa, M., Kandaswamy, P.: Propagation and reflection of Alfvén-acoustic-gravity waves in an isothermal compressible fluid. J. Fluid Mech.**80**, 223–236 (1977).

[14]

Seshadri, V. S., Sachdev, P. L.: Quasi-simple wave solutions for acoustic gravity waves. Phys. Fluids**20**, 888–894 (1977).

[15]

Adam, A.: Solar magnetoatmospheric waves—a simplified mathematical treatment. Astron. Astrophys.**60**, 171–179 (1977).

[16]

Nye, A. H., Thomas, J. H.: Solar magneto-atmospheric waves. I. An exact solution for a horizontal magnetic field. Astrophys. J.**204**, 573–581 (1976).

[17]

Nye, A. H., Thomas, J. H.: Solar magneto-atmospheric waves. II. A model for running Penumbral waves. Astrophys. J.**204**, 582–588 (1976).

[18]

Yu, C. P.: Magneto- atmospheric waves in a horizontal stratified conducting medium. Phys. Fluids**8**, 650–656 (1965).

[19]

Talwar, S. P.: Stability of a conducting rotating fluid of variable density. J. Fluid Mech.**9**, 581–592 (1960).

[20]

Odulo, Al. B., Odulo, An. B., Chusov, M. A.: On one class of nonlinear stationary waves in the ocean. Izvestiya, Atmosph. Ocean. Phys.**13**, 584–587 (1977).

[21]

Cole, J. D.: Perturbation methods in applied mathematics. Blaisdell Publishing Company 1968.

[22]

Sachdev, P. L., Gupta, N.: Exact travelling-wave solutions for model geophysical systems. Studies Appl. Math.**82**, 267–289 (1990).