Skip to main content
Log in

A model with two micro-scales for the effects of geometrical distribution of material inhomogeneity

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A general method is proposed to account for the geometrical distribution of material inhomogeneity. It consists in a two-step micro-macro transition. The randomly inhomogeneous material is envisaged as made of cells, each one with a definite distribution of material inhomogeneity, i.e. with a definite “state”. Only a finite number of different states is considered for the cells. In other words, many identical cells exist, though at random places in the material. In the first step, the behavior of each set of identical cells, i.e., the constitutive relation that relates the average stress in that set of cells to the average strain-rate in the same set, is obtained by periodic homogenization. In the second step, a variational model is used to get the macroscopic behavior of the material, i.e. to appropriately average over the different sets of cells. The method is theoretically justified. It is then applied to a fibre-reinforced mortar. It is efficient in predicting the mechanically measured reinforcement. The influences of the fibres arrangement and the friction coefficient are investigated: an arrangement is found to reinforce more effectively than does another one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. London Ser.A65, 349–354 (1952).

    Google Scholar 

  2. Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids15, 79–95 (1967).

    Google Scholar 

  3. Zeller, R., Dederichs, P. H.: Elastic constants of polycrystals. Phys. Stat. Solid.55, 831–842 (1973).

    Google Scholar 

  4. Berveiller, M., Zaoui, A.: Modeling of the plastic behavior of inhomogeneous media. J. Eng. Mater. Technol.106, 295–298 (1984).

    Google Scholar 

  5. Iwakuma, T., Nemat-Nasser, S.: Finite elastic-plastic deformation of polycrystalline metals and composites. Proc. R. Soc. London Ser.A394, 87–115 (1984).

    Google Scholar 

  6. Lipinski, P., Berveiller, M.: Elastoplasticity of micro-inhomogeneous metals at large strains. Int. J. Plasticity5, 149–172 (1989).

    Google Scholar 

  7. Molinari, A., Canova, G. R., Ahzi, S.: A self-consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall.35, 2983–2994 (1987).

    Google Scholar 

  8. Kröner, E.: Self-consistent scheme and graded disorder in polycrystals elasticity. J. Phys. F: Metal Phys.8, 2261–2267 (1978).

    Google Scholar 

  9. Gilormini, P.: A shortcoming of the classical non-linear extension of the self-consistent model. C. R. Acad. Sci. Paris320, Série IIb, 115–122 (1995).

    Google Scholar 

  10. Nemat-Nasser, S., Iwakuma, T., Hejazi, M.: On composites with periodic microstructures. Mech. Mater.1, 239 (1982).

    Google Scholar 

  11. Dvorak, G. J., Teply, J. L.: Periodic hexagonal array models for plasticity analysis of composite materials. In Plasticity today: modeling, methods and applications (Sawczuk, A., Bianchi, W., eds.), pp. 623–642. Amsterdam: Elsevier 1985.

    Google Scholar 

  12. Agah-Tehrani, A.: On finite deformation of composites with periodic microstructure. Mech. Mater.8, 255–268 (1990).

    Google Scholar 

  13. Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. Berlin: Springer 1980.

    Google Scholar 

  14. Bensoussan, A., Lions, J. L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Amsterdam. North-Holland 1978.

    Google Scholar 

  15. Suquet, P.: Plasticité et homogénéisation. Thèse de Doctorat d'Etat, Université Paris6, 1982.

  16. Suquet, P.: Elements of homogenization for inelastic solid mechanics. In: Homogenization techniques for composite media (Sanchez-Palencia, E., Zaoui, A., eds.), pp. 193–278. Berlin Heidelberg New York: Springer 1987

    Google Scholar 

  17. Christensen, R. M., Lo, K. H.: Solution for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids27, 315–330 (1979).

    Google Scholar 

  18. Bornert, M., Hervé, E., Stolz, C., Zaoui, A.: Self-consistent approaches and strain heterogeneities in two-phase elastoplastic materials. In: Micromechanics of random media (Ostoja-Starzewski, M., Jasiuk, I., eds.). Appl. Mech. Rev.47, N0 1, Part 2, pp. S66–S76 (1994).

  19. Suquet, P.: Analyse limite et homogénéisation. C. R. Acad. Sci. Paris, Sér. II,296, 1355–1358 (1983).

    Google Scholar 

  20. Arminjon, M., Chambard, T., Turgeman, S.: Variational micro-macro transition, with application to reinforced mortars. Int. J. Solids Struct.31, 683–704 (1994).

    Google Scholar 

  21. Arminjon, M.: Limit distribution of the states and homogenization in random media. Acta Mech.88, 27–59 (1991).

    Google Scholar 

  22. Arminjon, M., Bottero, A., Guessab, B., Turgeman, S.: Comments on a variational model for random composites and the integration of microstructural data. In: Proc. IUTAM Symp. Microstructure-Property Interactions in Composite Materials (Pyrz, R., ed.), pp. 1–14. Dordrecht: Kluwer 1995.

    Google Scholar 

  23. Hill, R.: On macroscopic effects of heterogeneity in elastoplastic media at finite strain. Math. Proc. Camb. Phil. Soc.95, 481–494 (1984).

    Google Scholar 

  24. Ziegler, H.: An introduction to thermodynamics. Amsterdam: North Holland 1977.

    Google Scholar 

  25. Hill, R.: Extremal paths of plastic work and deformation. J. Mech. Phys. Solids34, 511–523 (1986).

    Google Scholar 

  26. Werner, E. A., Siegmund, T., Weinhandl, H., Fischer, F. D.: Properties of random polycrystalline two-phase materials. In: Micromechanics of random media (Ostoja-Starzewski, M., Jasiuk, I., eds.). Appl. Mech. Rev.47, No 1, Part 2, pp. S231–S240 (1994).

  27. Arminjon, M., Imbault, D.: Physical meaning and experimental check of a variational principle for macro-to-micro transition. In: Proc. IUTAM Symp. Micro- and Macrostructural Aspects of Thermoplasticity (Bruhns, O. T., Stein, E., eds.), Dordrecht: Kluwer (to appear).

  28. Christman, T., Needleman, A., Suresh, S.: An experimental and numerical study of deformation in metal-ceramic composites. Acta Metall. Mater.37, 3029–3050 (1989).

    Google Scholar 

  29. Böhm, H. J., Rammerstorfer, F. G., Weissenbeck, E.: Some simple models for micromechanical investigations of fiber arrangements in MMCs. Comput. Mater. Sci.1, 177–194 (1993).

    Google Scholar 

  30. Michel, J. C., Suquet, P.: On the strength of composite materials: variational bounds and numerical aspects. In: Topology design of structures (Bendsoe, M. P., Mota-Soares, C., eds.), pp. 355–374. Dordrecht: Kluwer 1993.

    Google Scholar 

  31. Chambard, T.: Contribution à l'homogénéisation en plasticité pour une répartition aléatoire des hétérogénéités. Thèse de Doctorat, Université Joseph Fourier. Grenoble, 1993.

    Google Scholar 

  32. Stassi d'Alia, F.: Flow and fracture of materials according to a new limiting condition of vielding. Meccanica, September, 178–195 (1967).

  33. Turgeman, S.: Méthode numérique pour le dimensionnement des ouvrages en sols renforcés. Proc. Coll. Méthodes et Outils pour l'Ingénierie B.T.P., pp. 191–202. Université de Savoie, Chambéry, France, 1989.

    Google Scholar 

  34. Jaynes, E. T.: Information theory and statistical mechanics. Phys. Rev.106, 620–630 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arminjon, M., Guessab, B. A model with two micro-scales for the effects of geometrical distribution of material inhomogeneity. Acta Mechanica 134, 61–79 (1999). https://doi.org/10.1007/BF01170304

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170304

Keywords

Navigation