Skip to main content
Log in

Embedding by pseudo atoms, and the topologically determined one-electronic energy levels

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

It is shown that the embedding of covalent clusters with the help of pseudo atoms and thefullerene π electronic structure of amorphous carbon can be studied by the same formalism. Tight-binding model calculations were done for silicon clusters. It was found that the covalent clusters often have topologically determined energy levels that are cleared out from the spectrum in the presence of embedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Mesmer and G.D. Watkins, Phys. Rev. Lett. 25 (1970)656–659.

    Google Scholar 

  2. F.P. Larkins, J. Phys. C4 (1971)3065–3076.

    Google Scholar 

  3. I. László, Int. I Quant. Chem. Suppl. 2, 12 (1977)105–114.

    Google Scholar 

  4. I. László, Int. I Quant. Chem. 21 (1982)813–822.

    Google Scholar 

  5. A. Julg, F. Marinelli and A. Pellégatti, Int. J. Quant. Chem. 14 (1978)181–190.

    Google Scholar 

  6. C. Pisani and F. Ricca, Surface Sci. 92 (1980)481–488.

    Google Scholar 

  7. E. Gaigher and W.S. Verwoerd, Surface Sci. 103 (1981)338–352.

    Google Scholar 

  8. V. Barone and G. Del Re, J. Mol. Strum (THEOCHEM) 94 (1983)173–185.

    Google Scholar 

  9. V. Barone, F. Lelj, N. Russo and G. Abbate, Sol. Stat. Commun. 49 (1984)925–928.

    Google Scholar 

  10. V. Barone, F. Leij, N. Russo, M. Toscano, F. Inas and J. Rubin, Surface Sci. 162 (1985)169–174.

    Google Scholar 

  11. J. Robertson and E.P. O'Reilly, Phys. Rev. B35 (1987)2946–2957.

    Google Scholar 

  12. S. Kugler and I. László, Phys. Rev. B39 (1989)3882–3884.

    Google Scholar 

  13. H.W. Kyoto, J.T. Heath, S.C. O'Brien, R.F. Curl and R.E. Smalley, Nature 318 (1985)162–163.

    Google Scholar 

  14. H.W. Kyoto, Nature 329 (1987)529–531.

    Google Scholar 

  15. I. László and L. Udvardi, Chem. Phys. Lett. 136 (1987)418–422.

    Google Scholar 

  16. I. László and L. Udvardi, J. Mol. Struct. (THEOCHEM) 183 (1989)271–278.

    Google Scholar 

  17. A.H. Harker and F.P. Larkins, J. Phys. Cl2 (1979)2487–2495.

    Google Scholar 

  18. A.H. Harker and F.P. Larkins, J. Phys. C12 (1979)2497–2508.

    Google Scholar 

  19. A.H. Harker and F.P. Larkins, J. Phys. Cl2 (1979)2509–2517.

    Google Scholar 

  20. P. Deák, Acta Phys. Hung. 50 (1981)247–262.

    Google Scholar 

  21. R.A. Evarestov,Kvardovohimicseszkije methodi v teorii tverdogo tele (Leningrad University Press, Leningrad, 1982), pp. 84–152.

    Google Scholar 

  22. P.V. Smith and J.E. Szymanski, Vacuum 33 (1983)625–626.

    Google Scholar 

  23. J.E. Szymanski, P.V. Smith and J.A.D. Matthew, Phil. Mag. B51 (1985)193–198.

    Google Scholar 

  24. P.V. Smith and J.E. Szymanski, Phys. Stat. Sol. (b) 134 (1986)185–194.

    Google Scholar 

  25. G. Náray-Szabó, Gy. Kramen, P. Nagy and S. Kugler, J. Comput. Chem. 8 (1987)555–561.

    Google Scholar 

  26. S. Kugler, P.R. Surján and G. Náray-Szabó, Phys.Rev. B37 (1988)9069–9071.

    Google Scholar 

  27. M. Révész, I. Bertópti, G. Mink and I. Mayer, J. Mol. Struct. (THEOCHEM) 181 (1988)335–343.

    Google Scholar 

  28. J.F. Moray, F.J. Himpsel, G. Hollinger, J.L. Jordan, G. Hughes and F.R. McFeely, Phys. Rev. B33 (1986)1340–1345.

    Google Scholar 

  29. J.F. Morar, F.J. Himpsel, G. Hollinger, J.L. Jordan, G. Hughes and F.R. McFeely, Phys. Rev. B33 (1986)1346–1349.

    Google Scholar 

  30. R.C. Haddon and L.T. Scott, Pure Appl. Chem. 58 (1986)137–142.

    Google Scholar 

  31. R.C. Haddon, J. Amer. Chem. Soc. 108 (1986)2837–2842.

    Google Scholar 

  32. R.C. Haddon, Chem. Phys. Lett. 125 (1986)231–234.

    Google Scholar 

  33. R.C. Haddon, J. Phys. Chem. 91 (1987)3719–3720.

    Google Scholar 

  34. I. László and Cs. Menyes, Phys. Rev. B44 (1991)7730–7732.

    Google Scholar 

  35. I. László and Cs. Menyes, to be published.

  36. A. Graovac, I. Gutman and N. Trinajstic,Topological Approach to Chemistry of Conjugated Molecules (Springer, Berlin, 1977).

    Google Scholar 

  37. M.J. Rigby, R.B. Mallion and A.C. Day, Chem. Phys. Lett. 51 (1977)178–182; see also erratum in Chem. Phys. Lett. 53(1978)418.

    Google Scholar 

  38. J.C. Slater and G.F. Koster, Phys. Rev. 94 (1954)1498–1524.

    Google Scholar 

  39. D.A. Papaconstantopoulos,Handbook of The Band Structure of Elemental Solids (Plenum Press, New York, 1986), pp. 233–234.

    Google Scholar 

  40. P.-O. Löwdin J. Mol. Spectr. 12 (1963)12–33.

    Google Scholar 

  41. P.-O. Löwdin, Int. J. Quant. Chem. 2 (1968)867–931.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

László, I. Embedding by pseudo atoms, and the topologically determined one-electronic energy levels. J Math Chem 10, 303–311 (1992). https://doi.org/10.1007/BF01169179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01169179

Keywords

Navigation