Skip to main content
Log in

A theoretical analysis of excited state proton transfer in 3-hydroxyflavone. Promoting effect of a low frequency bending mode

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The dynamical properties of excited state intramolecular proton transfer in 3-hydroxyflavone have been analyzed on the basis of the time evolution of the quantum states of the two isomeric forms. Potential energy surfaces have been computed at the MNDO/AM1 level. The results shed light on the essential features of the proton transfer mechanism: in particular, the rapidity of the process is to be attributed to the promoting effect of a low frequency bending vibration, which shortens the distance between donor and acceptor atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Voelker, R.M. MacFarlane, A.Z. Genack, H.P. Trommsdorff and J.H. van den Waals, J. Chem. Phys. 67 (1977)1759;

    Google Scholar 

  2. J. Goodman and L.E. Bras, J. Amer. Chem. Soc. 100(1978)7472.

    Google Scholar 

  3. K. Peters, M.L. Applebury and P.M. Rentzepis, Proc. Nat. Acad. Sci. USA 741977)3119.

    PubMed  Google Scholar 

  4. A. Weller, Naturwissenschaften 421955)175.

    Google Scholar 

  5. P.F. Barbara, P.K. Walsh and L.E. Brus, J. Phys. Chem. 93 (1989)29.

    Google Scholar 

  6. P.F. Barbara, L.E. Brus and P.M. Rentzepis, J. Amer. Chem. Soc. 102 (1981)5631;

    Google Scholar 

  7. T. Elsaesser and W. Kaiser, Chem. Phys. Lett. 128(1986)231.

    Google Scholar 

  8. J. Goodman and L.E. Brus, J. Amer. Chem. Soc. 100 (1978)7472;

    Google Scholar 

  9. K.K. Smith and K.J. Kaufman, J. Phys. Chem. 82(1978)2286.

    Google Scholar 

  10. A. Mordzinski and W. Kuhle, J. Phys. Chem. 90 (1986)1455;

    Google Scholar 

  11. N.P. Emsting, J. Phys. Chem. 89(1985)4832;

    Google Scholar 

  12. N.P. Ernsting, A. Mordzinski and B. Dick, J. Phys. Chem. 91(1987)1404.

    Google Scholar 

  13. T. Nishiya, S. Yamauchi, N. Hirota, M. Baba and I. Hanazaki, J. Phys. Chem. 90 (1986)5730.

    Google Scholar 

  14. S. Nagaoka, U. Nagashima, N. Ohta, M. Fujita and T. Takemura, J. Phys. Chem. 92 (1988)166.

    Google Scholar 

  15. M.H. Van Benthen and G.D. Gillispie, J. Phys. Chem. 88 (1984)2954;

    Google Scholar 

  16. M.H. Van Benthen, G.D. Gillispie and R.C. Haddom, J. Phys. Chem. 86(1982)4281;

    Google Scholar 

  17. G. Smulevich and P. Foggi, J. Chem. Phys. 87(1987)5657.

    Google Scholar 

  18. J.F. Ireland and P.A.H. Wyatt, Adv. Phys. Org. Chem. 12 (1976)131;

    Google Scholar 

  19. E. Vander Donckt, Prog. React. Kinet. 5(1979)273.

    Google Scholar 

  20. H.J. Heller and H.R. Blattmann, J. Pure Appl. Chem. 36 (1973)141.

    Google Scholar 

  21. P. Chou, D. McMorrow, T.J. Aartsma and M. Kasha, J. Phys. Chem. 88 (1984)4596.

    Google Scholar 

  22. M.M. Caldwell, R. Robberecht and S.D. Flint, Plant 58 (1983)445;

    Google Scholar 

  23. M.S. Darling, Amer. J. Bot. 76(1989)1698.

    Google Scholar 

  24. P.K. Sengupta and M. Kasha, Chem. Phys. Left. 68 (1979)382.

    Google Scholar 

  25. G.J. Woolfe and P.J. Thistlethwaite, J. Amer. Chem. Soc. 103 (1981)6916.

    Google Scholar 

  26. D. McMorrow and M. Kasha, J. Amer. Chem. Soc. 105 (1983)5133.

    Google Scholar 

  27. D. McMorrow and M. Kasha, Proc. Nat. Acad. Sci. USA 81 (1984)3375.

    PubMed  Google Scholar 

  28. D. McMoffow and M. Kasha, J. Phys. Chem. 88 (1984)2235.

    Google Scholar 

  29. A.J.G. Strandjord, D.E. Smith and P.F. Barbara, J. Phys. Chem. 89 (1985)2362.

    Google Scholar 

  30. B.L. Shaw and T.H. Simpson, J. Chem. Soc. 655(1955).

  31. C.I. Jose, P.S. Phadke and A.V. Rama Rao, Spectrochim. Acta Part A, 30A (1974)1199.

    Google Scholar 

  32. M. Itoh, K. Takumura, Y. Tanimoto, Y. Okada, H. Takeuchi, K. Obi and I. Tanaka, J. Amer. Chem. Soc. 104 (1982)4146;

    Google Scholar 

  33. M. Itoh, Y. Fujiwara, M. Surnitani and K. Yoshihara, J. Phys. Chem. 90(1986)5672.

    Google Scholar 

  34. A.J.G. Strandjord and P.F. Barbara, Chem. Phys. Lett. 98 (1983)21.

    Google Scholar 

  35. A.J.G. Strandjord, J.H. Courtney, D.M. Fridrich and P.F. Barbara, J. Phys. Chem. 87 (1983)1125.

    Google Scholar 

  36. D. McMorrow, T.P. Dzugan and T.J. Aartsma, Chem. Phys. Lett. 103 (1984)492.

    Google Scholar 

  37. G.A. Brucker and D.F. Kelley, J. Phys. Chem. 91 (1987)2856.

    Google Scholar 

  38. B. Dick and N.P. Emsting, J. Phys. Chem. 91 (1987)4261.

    Google Scholar 

  39. S.L. Studer, P.T. Chou and D. McMorrow, Chem. Phys. Lett. 161 (1989)361.

    Google Scholar 

  40. G.A. Brucker and D.F. Kelley, J. Phys. Chem. 93 (1989)5179.

    Google Scholar 

  41. B. Dick, J. Phys. Chem. 94 (1990)5752.

    Google Scholar 

  42. T.D. Boumann, M.A. Knobeloch and S. Bohan, J. Phys. Chem. 89 (1985)4460.

    Google Scholar 

  43. M.J.S. Dewar and W. Thiel, J, Amer. Chem. Soc. 107 (1977)1489.

    Google Scholar 

  44. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy and J.J.P. Stewart, J. Amer. Chem. Soc. 107 (1985)3902.

    Google Scholar 

  45. M.J.S. Dewar, M.A. Fox, K.A. Campbell, C.C. Chen, J.B. Friedheim, M.K. Halloway, S.C. Kim, P.B. Lieschesky, A.M. Pakiari, T.P. Tien and E.G. Zoebisch, J. Comput. Chem. 5 (1984)480.

    Google Scholar 

  46. M. Seel and G. Del Re, Int. J. Quant. Chem. 30 (1986)563.

    Google Scholar 

  47. J. Troe and K.M. Weitzel, J. Chem. Phys. 88 (1988)7030.

    Google Scholar 

  48. M.J.S. Dewar and C. Boubleday, J. Amer. Chem. Soc. 100 (1978)4935.

    Google Scholar 

  49. H.E. Zimmermann and A.M. Weber, J. Amer. Chem. Soc. 111 (1989)995.

    Google Scholar 

  50. C. Rulliere, A. Declemy, P. Kotfis and L. Ducasse, Chem. Phys. Lett. 117 (1985)583.

    Google Scholar 

  51. P. Ertl, Int. J. Quant. Chem. 38 (1990)231;

    Google Scholar 

  52. P. Ertl, Coll. Czech. Chem. Comm. 54(1989)1433;

    Google Scholar 

  53. P. Ertl and J. Leska, J. Mol. Struct. (THEOCHEM) 165(1988)l.

    Google Scholar 

  54. P. Ertl, Coll. Czech. Chem. Comm. 55 (1990)1399.

    Google Scholar 

  55. A.A. Voityiuk and A.A. Bliznyuk, Theor. Chim. Acta 72 (1987)223; J. Mol. Struct. (THEOCHEM) 164(1988)343.

    Google Scholar 

  56. E.L. Coitino, K. Irving, J. Rama, A. Iglesias, M. Paulino and O.N. Ventura, J. Mol. Struct. (THEOCHEM) 210 (1990)405.

    Google Scholar 

  57. V. Barone, private communication.

  58. J.J.P. Stewart, MOPAC 6.00: Q.C.P.E. No. 438.

  59. M.J.S. Dewar and D.A. Liotard, J. Mol. Struct. (THEOCHEM) 206 (1990)123. [48]G. Del Re, A. Peluso and C. Minichino, Can. J. Chem. 63(1985)1850.

    Google Scholar 

  60. K. Fukui, J. Phys. Chem. 74 (1970)4161; Accts. Chem. Res. 14(1981)368;

    Google Scholar 

  61. R.A. Marcus, J. Chem. Phys. 45(1966)4493, 49(1968)2610.

    Google Scholar 

  62. J.C.D. Brand and C.V.S. Ramachadrea Rao, J. Mol. Spectros. 61 (1976)360.

    Google Scholar 

  63. T. Carrington, Jr. and W.H. Miller, J. Chem. Phys. 81 (1984)3942, 84(1986)4364.

    Google Scholar 

  64. N. Shida, P.F. Barbara and J.E. Almlof, J. Chem. Phys. 91 (1989)4061.

    Google Scholar 

  65. N. Sato and S. Iwata, J. Chem. Phys. 89 (1988)2932.

    Google Scholar 

  66. G. Del Re, W. Förner, D. Hofmann and J. Ladik, J. Chem. Phys. 139 (1989)265.

    Google Scholar 

  67. G. Del Re and C. Adamo, J. Phys. Chem. 95 (1991)4231.

    Google Scholar 

  68. G.G. Hall and H. Nobutoki, Theor. Chim. Acta 74 (1988)23.

    Google Scholar 

  69. A. Messiah,Quantum Mechanics, 11th ed. (North-Holland, Amsterdam, 1985).

    Google Scholar 

  70. M. Abramowitz and I.A. Stegun (eds.),handbook of Mathematical Functions (Dover, New York, 1972)

    Google Scholar 

  71. J. Brickmarm and H. Zimmermann, J. Chem. Phys. 50 (1969)1608.

    Google Scholar 

  72. G.A. Brucker, T.C. Swinney and D.F. Kelley, J. Phys. Chem. 95 (1991)3190.

    Google Scholar 

  73. G.A. Brucker and D.F. Kelley, J. Phys. Chem. 92 (1988)3805.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peluso, A., Adamo, C. & Del Re, G. A theoretical analysis of excited state proton transfer in 3-hydroxyflavone. Promoting effect of a low frequency bending mode. J Math Chem 10, 249–274 (1992). https://doi.org/10.1007/BF01169177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01169177

Keywords

Navigation