Skip to main content
Log in

Non-superaromatic reference for carbon nanotube as a quasi-one-dimensional π-bonding model for graphite

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A non-superaromatic reference defined for an armchair tubule is proposed as a simple model for the graphite π-electron system. This kind of reference structure is easy to deal with because of its quasi-one-dimensional character. We found that even the non-superaromatic reference for a relatively thin armchair tubule has essentially the same π-binding energy per carbon atom as graphite. The accurate π-binding energy per carbon atom of graphite turned out to be 1.57459724β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.R. Wallace, Phys. Rev. 71 (1947) 622.

    Google Scholar 

  2. C.A. Coulson and R. Taylor, Proc. Phys. Soc. London A65 (1952) 815.

    Google Scholar 

  3. J. Linderberg and Y. Öhrn,Propagators in Quantum Chemistry (Academic Press, London, 1973) ch.3.

    Google Scholar 

  4. I. Gutman, Z. Naturforsch. (a) 36 (1981) 128.

    Google Scholar 

  5. S.E. Stein and R.L. Brown, J. Am. Chem. Soc. 109 (1987) 3721.

    Google Scholar 

  6. T.G. Schmalz, W.A. Seitz, D.J. Klein and G.E. Hite, J. Am. Chem. Soc. 110 (1988) 1113.

    Google Scholar 

  7. H. Hosoya, Y. Tsukano, M. Ohuchi and K. Nakada, in:Computer Aided Innovation of New Materials II, eds. M. Doyama, J. Kihara, M. Tanaka and R. Yamamoto (Elsevier, Amsterdam, 1993)pp.155–158.

    Google Scholar 

  8. J. Aihara, T. Yamabe and H. Hosoya, Synth. Met. 64 (1994) 309.

    Google Scholar 

  9. J. Aihara and T. Tamaribuchi, J. Chem. Soc. Faraday Trans. 90 (1994) 3513.

    Google Scholar 

  10. M. Randić, Y. Tsukano and H. Hosoya, Nat. Sci. Rep. Ochanomizu Univ. 45 (1994)101.

    Google Scholar 

  11. J. Aihara, J. Phys. Chem. 98 (1994) 9773.

    Google Scholar 

  12. J.W. Mintmire, B.I. Dunlap and C.T. White, Phys. Rev. Lett. 68 (1992) 631.

    PubMed  Google Scholar 

  13. N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579.

    PubMed  Google Scholar 

  14. K. Tanaka, K. Okahara, M. Okada and T. Yamabe, Chem. Phys. Lett.191 (1992) 469.

    Google Scholar 

  15. K. Harigaya, Phys. Rev. B45 (1992) 12071.

    Google Scholar 

  16. R. Saito, M. Fujita, G. Dresselhaus and M.S. Dresselhaus, Phys. Rev. B46 (1992) 1804.

    Google Scholar 

  17. D.J. Klein, W.A. Seitz and T.G. Schmalz, J. Phys. Chem. 97 (1993) 1231.

    Google Scholar 

  18. K. Okahara, T. Satoh, H. Aoki, K. Tanaka and T. Yamabe, Chem. Phys. Lett. 219 (1994) 462.

    Google Scholar 

  19. S. Iijima, Nature 354 (1991) 56.

    Google Scholar 

  20. R.C. Haddon, Acc. Chem. Res. 21 (1988) 243.

    Google Scholar 

  21. L.J. Schaad, B.A. Hess, Jr., J.B. Nation and N. Trinajstić, Croat. Chem. Acta 51 (1979) 233.

    Google Scholar 

  22. J. Aihara, Bull. Chem. Soc. Jpn. 52 (1979) 1529.

    Google Scholar 

  23. J. Aihara, J. Chem. Soc. Faraday Trans. 91 (1995) 237.

    Google Scholar 

  24. E. Clar, The Aromatic Sextet (Wiley, London, 1972).

    Google Scholar 

  25. B.A. Hess, Jr. and L.J. Schaad, J. Am. Chem. Soc. 93 (1971) 305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aihara, Ji., Tamaribuchi, T. Non-superaromatic reference for carbon nanotube as a quasi-one-dimensional π-bonding model for graphite. J Math Chem 19, 231–239 (1996). https://doi.org/10.1007/BF01166716

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166716

Keywords

Navigation