Skip to main content
Log in

Theory and algorithms for mixed Monte Carlo-stochastic dynamics simulations

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The recently introduced mixed MC-SD method is a fundamentally new procedure which essentially eliminates the distinction between Monte Carlo and dynamics. Unlike other methods which utilize forces, Brownian motion or dynamical steps to generate new trial configurations in a Monte Carlo search, mixed MC-SD does stochastic dynamics on the cartesian space of a molecule and Monte Carlo on the torsion space of the molecule simultaneously. After each dynamical step, a random deformation of a rotatable torsion is performed and accepted or rejected according to the Metropolis criteria. The next dynamical step is performed from the most recent configuration and the velocities from the previous dynamical step. The smooth merging of Monte Carlo and dynamics requires the use of the stochastic velocity Verlet integration scheme. Here, the velocity Verlet stochastic dynamics method is derived, and the reasons why it can be joined with Metropolis Monte Carlo in a continuous fashion are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Alder and T.E. Wainwright, Phys. Rev. Lett. 18 (1967)988;

    Google Scholar 

  2. W.G. Hoover and F.H. Ree, J. Chem. Phys. 49 (1968) 3609;

    Google Scholar 

  3. A. Rahman, Phys. Rev. 136 (1964) A405;

    Google Scholar 

  4. L. Verlet, Phys. Rev. 159 (1967) 98.

    Google Scholar 

  5. J.A. McCammon and S.C. Harvey,Dynamics of Proteins and Nucleic Acids (Cambridge University Press, New York, 1987).

    Google Scholar 

  6. W.L. Jorgensen, Acc. Chem. Res. 22 (1989) 184;

    Google Scholar 

  7. P. Kollman, Chem. Rev. 93 (1993) 2395.

    Google Scholar 

  8. R. Tolman,The Principles of Statistical Mechanics (Dover Press, New York, 1971).

    Google Scholar 

  9. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, J. Chem. Phys. 21 (1953) 187.

    Google Scholar 

  10. M.P. Allen and D.J. Tildesley,Computer Simulations of Liquids (Clarendon, Oxford, 1987);

    Google Scholar 

  11. D. Chandler,Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987);

    Google Scholar 

  12. D. McQuarrie,Statistical Mechanics (Harper and Row, New York, 1976);

    Google Scholar 

  13. H.C. Anderson, J. Chem. Phys. 72 (1980) 2384.

    Google Scholar 

  14. G.P. Morris and D.J. Evans, Mol. Phys. 54 (1985) 629.

    Google Scholar 

  15. S. Nose, Mol. Phys. 52 (1984) 255.

    Google Scholar 

  16. A. Brass, B.J. Pendleton and B. Robson, Biopol. 33 (1993) 1307;

    Google Scholar 

  17. D.W. Heerman, P. Nielaba and M. Rovere, Comp. Phys. Comm. 60 (1990) 311;

    Google Scholar 

  18. J. Cao and B.J. Berne, J. Chem. Phys. 92 (1979) 129;

    Google Scholar 

  19. M. Rao and B.J. Berne, J. Chem. Phys. 71 (1979) 129;

    Google Scholar 

  20. P.J. Rossky, J.D. Doll and H.L. Friedman, J. Chem. Phys. 69 (1978) 4628;

    Google Scholar 

  21. D. Frenkel, C.A.M. Mooij and B. Smit, J. Phys. Condens. Matter 4 (1992) 3053;

    Google Scholar 

  22. J.J. de Pablo, M. Laso and U. Suter, J. Chem. Phys. 96 (1992) 2395.

    Google Scholar 

  23. W.G. Hoover, Phys. Rev. A31 (1985)1695.

    Google Scholar 

  24. G.J. Martyna, M.L. Klein and M. Tuckerman, J. Chem. Phys. 97 (1992) 2635;

    Google Scholar 

  25. D. Kusnezov, A. Bulgac and W. Bauer, Ann. Phys. 204 (1990) 155;

    Google Scholar 

  26. I.P. Hamilton, Phys. Rev. A42 (1990) 7467;

    Google Scholar 

  27. R.G. Winkler, Phys. Rev. A45 (1992) 2250.

    Google Scholar 

  28. J.U. Brackbill and B.L. Cohen,Multiple Time Scales (Academic, Orlando, Florida, 1985).

    Google Scholar 

  29. F. Guarnieri and W. C. Still, J. Comp. Chem. 15 (1994) 1302.

    Google Scholar 

  30. M. Burger, A. Armstrong, F. Guarnieri, D.Q. McDonald and W.C. Still, J. Amer. Chem. Soc. 116 (1994) 3593.

    Google Scholar 

  31. A. Papoulis,Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, NY, 1965).

    Google Scholar 

  32. W.F. van Gunsteren and H.J.C. Berendsen, Mol. Sim. 1 (1988) 173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guarnieri, F. Theory and algorithms for mixed Monte Carlo-stochastic dynamics simulations. J Math Chem 18, 25–35 (1995). https://doi.org/10.1007/BF01166601

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166601

Keywords

Navigation