Skip to main content
Log in

The role of the reference state in nonlinear kinetic models: Network thermodynamics leads to a linear and reciprocal coordinate system far from equilibrium

  • Papers
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Nonlinear systems can not be totally determined by the conjugate pairs of through and across variables routinely used in nonequilibrium thermodynamics and physical systems theory [1,2] . Once a reference state is specified, this problem is solved, but the constitutive relations now are reference state dependent. In this work, network thermodynamics, as developed by Peusner [3,4], is applied to nonlinear kinetic networks. The unification with the Hill, King-Altman approaches is further refined using the reference state idea of Sauer [ 1,2]. This results in a new, formal “thermokinetic” coordinate system which preserves both linearity and reciprocity far from equilibrium. This work also identifies two distinct classes of networks, namely “mechanistic” and “thermodynamic”. It will be shown that Peusner's approach [3–8, 24–28] provides a smooth transition between them as the mechanistic model approaches the near equilibrium (Onsager) domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.A. Sauer, in: Appendix toHandbook of Physiology, Sect. 8, ed. J. Orloff and R.W. Berliner (Williams and Wilkins, Baltimore, MD, 1973) Ch. 12, p. 399.

    Google Scholar 

  2. F.A. Sauer, in:Intestinal Permeation, ed. M. Kramer and F. Lauterbach (Exerpta Medica, Amsterdam, 1977) p. 320.

    Google Scholar 

  3. L. Peusner, The principle of network thermodynamics and biophysics applications, Ph.D. Thesis, Harvard University, Cambridge, MA (1970).

    Google Scholar 

  4. L. Peusner,Studies in Network Thermodynamics (Elsevier, Amsterdam, 1986).

    Google Scholar 

  5. L. Peusner, D.C. Mikulecky, S.R. Caplan and B. Bunow, J. Chem. Phys. 83 (1985)5559.

    Google Scholar 

  6. D.C. Mikulecky, F.A. Sauer and L. Peusner,Biophys. Memb. Transp. VIII, ed. J. Kucera and S. Przestalski (Agricultural Academy of Wroclaw, Wroclaw, Poland, 1986) p. 217.

    Google Scholar 

  7. L. Peusner, J. Theor. Biol. 122 (1986)125.

    Google Scholar 

  8. L. Peusner, J. Memb. Sci. (in press).

  9. L. Onsager, Phys. Rev. 37 (1931)405.

    Google Scholar 

  10. L. Onsager, Phys. Rev. 38 (1931)2665.

    Google Scholar 

  11. A. Katchalsky and P.F. Curran,Nonequilibrium Thermodynamics in Biophysics (Harvard University Press, Cambridge, MA, (1965).

    Google Scholar 

  12. S.R. Caplan and A. Essig,Bioenergetics and Linear Nonequilibrium Thermodynamics: The Steady State (Harvard University Press, Cambridge, MA, 1983).

    Google Scholar 

  13. K.J. Rothschild, S.A. Ellias, A. Essig and H.E. Stanley, Biophys. J. 30 (1980)209.

    Google Scholar 

  14. A. Essig and S.R. Caplan, Proc. Natl. Acad. Sci. USA 78 (1981)1647.

    Google Scholar 

  15. T.L. Hill,Free Energy T ransduction in Biology (Academic Press, New York, 1977 ).

    Google Scholar 

  16. T.L. Hill, Nature 84 (1982)5878.

    Google Scholar 

  17. G.R. Kirchhoff, English translation in:Graph Theory 1736—1936, ed. N.L. Briggs, F.K. Lloyd and R.J. Wilson (Oxford University Press, London, 1976) p. 131.

    Google Scholar 

  18. G.F. Oster, A.S. Perelson and A. Katchalsky, Quart. Rev. Biophys. 6(1973).

  19. D. Waltz and S.R. Caplan, Biochim. Biophys. Acta 859 (1986)151.

    Google Scholar 

  20. D.C. Mikulecky, Amer. J. Physiol. 245 (1983)R1.

    Google Scholar 

  21. J.L. Wyatt, Jr., D.C. Mikulecky and J.A. DeSimone, Chem. Eng. Sci. 345 (1980)2115.

    Google Scholar 

  22. J.C. White and D.C. Mikulecky, Pharmac. Ther. 15 (1982)251.

    Google Scholar 

  23. K.M. Thakker, J.M. Wood and D.C. Mikulecky, Comput. Prog. Biomed. 15 (1982)61.

    Google Scholar 

  24. L. Peusner, J. Theor. Biol. 115 (1985)319.

    Google Scholar 

  25. L. Peusner, J. Chem. Phys. 83 (1985)1276.

    Google Scholar 

  26. L. Peusner, J. Chem. Soc. Faraday Trans. 2 (1985)1151.

    Google Scholar 

  27. L. Peusner, J. Chem. Phys. 77 (1982)5500.

    Google Scholar 

  28. L. Peusner, in:Chemical Applications of Topology and Graph Theory, ed. R.B. King (Elsevier, Amsterdam, 1983) p. 379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikulecky, D.C., Sauer, F. The role of the reference state in nonlinear kinetic models: Network thermodynamics leads to a linear and reciprocal coordinate system far from equilibrium. J Math Chem 2, 171–196 (1988). https://doi.org/10.1007/BF01165927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01165927

Keywords

Navigation