Skip to main content
Log in

Mass transport to tubular electrodes

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The mathematical treatment of mass transport in tubular electrodes has been examined for the EC process when a reversible electrode charge transfer is followed by a reversible chemical reaction. The transition from fast chemical reaction to slow chemical reaction is investigated. The system of convective-diffusion equations, representing the physical phenomena, are solved using properties of the integral transform and numerical computation of the integral equation. The effects of the chemical equilibrium parameter, the axial velocity of the flow and the potential scan rate on theoretical current-potential curves are elucidated and a simple procedure to determine the chemical reaction rate constant is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Aoki, K. Tokuda and H. Matsuda, J. Electroanal. Chem. 76 (1977) 217.

    Google Scholar 

  2. K. Aoki and H. Matsuda, J. Electroanal. Chem. 90 (1978) 333.

    Google Scholar 

  3. B.A. Coles and R.G. Compton, J. Electroanal. Chem. 127 (1981) 37.

    Google Scholar 

  4. R.G. Compton, D.J. Page and G.R. Sealy, J. Electroanal. Chem. 161 (1984) 129.

    Google Scholar 

  5. R.G. Compton, P.J. Daly, P.R. Unwin and A.M. Waller, J. Electroanal. Chem. 191 (1985) 15.

    Google Scholar 

  6. R.G. Compton and P.J. Daly, J. Electroanal. Chem. 178 (1984) 45.

    Google Scholar 

  7. R.G. Compton and G.R. Sealy, J. Electroanal. Chem. 145 (1983) 35.

    Google Scholar 

  8. R.G. Compton, M.B.G. Pilkington, G.M. Steam and P.R. Unwin, J. Electroanal. Chem. 238 (1987) 43.

    Google Scholar 

  9. R.G. Compton and P.R. Unwin, J. Electroanal. Chem. 264 (1989) 27.

    Google Scholar 

  10. R.G. Compton and P.R. Unwn, J. Electroanal. Chem. 205 (1986) 1.

    Google Scholar 

  11. J. Dutt, J. Chhabra and T. Singh, J. Electroanal. Chem. 273 (1989) 69.

    Google Scholar 

  12. J. Dutt and T. Singh, J. Electroanal. Chem. 182 (1985) 259.

    Google Scholar 

  13. J. Dutt and T. Singh, J. Electroanal. Chem. 207 (1986) 41.

    Google Scholar 

  14. Ng Lanny and H.Y. Cheh, J. Electroanal. Chem. 132 (1985) 98.

    Google Scholar 

  15. C.B. Ranger, Anal. Chem. 53 (1981) 20A.

    Google Scholar 

  16. D.A. Roston, F.E. Shoupe and P.T. Kissinger, J. Electroanal. Chem. 54 (1982) 1417A.

    Google Scholar 

  17. J. Ruzicka and E. Hanson,Flow Injection Analysis (Wiley, New York, 1981).

    Google Scholar 

  18. J. Ruzicka, J. Electroanal. Chem. 55 (1983) 1040A.

    Google Scholar 

  19. T. Singh, J. Dutt and S. Kaur, J. Electroanal. Chem. 304 (1991) 17.

    Google Scholar 

  20. T. Singh and J. Dutt, J. Electroanal. Chem. 196 (1985) 35.

    Google Scholar 

  21. K. Tokuda, K. Aoki and H. Matsuda, J. Electroanal. Chem. 80 (1977) 211.

    Google Scholar 

  22. C. Wagner, J. Math. Phys. 32 (1954) 289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, T., Pal Singh, R. & Dutt, J. Mass transport to tubular electrodes. J Math Chem 17, 335–346 (1995). https://doi.org/10.1007/BF01165753

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01165753

Keywords

Navigation