Skip to main content
Log in

Measuring the predictive performance of computer-controlled infusion pumps

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Current measures of the performance of computer-controlled infusion pumps (CCIPs) are poorly defined, of little use to the clinician using the CCIP, and pharmacostatistically incorrect. We propose four measures be used to quantitate the performance of CCIPs: median absolute performance error (MDAPE), median performance error (MDPE), divergence, and wobble. These measures offer several significant advantages over previous measures. First, their definitions are based on the performance error as a fraction of the predicted (rather than measured) drug concentration, making the measures much more useful to the clinician. Second, the measures are defined in a way that addresses the pharmacostatistical issue of appropriate estimation of population parameters. Finally, the measure of inaccuracy, MDAPE, is defined in a way that is consistent with iteratively reweighted least squares nonlinear regression, a commonly used method of estimating pharmacokinetic parameters. These measures make it possible to quantitate the overall performance of a CCIP or to compare the predictive performance of CCIPs which differ in either general approach (e.g., compartmental model driven vs. plasma efflux approach), pump mechanics, software algorithms, or pharmacokinetic parameter sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Alvis, J. G. Reves, A. V. Govier, P. G. Menkhaus, C. E. Henling, J. A. Spain, and E. Bradley. Computer-assisted continuous infusions of fentanyl during cardiac anesthesia: Comparison with a manual method.Anesthesiology 63:41–49 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. M. E. Ausems, D. R. Stanski, and C. C. Hug. An evaluation of the accuracy of pharmacokinetic data for the computer assisted infusion of alfentanil.Br. J. Anaesth. 57:1217–1225 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. D. P. Crankshaw, M. D. Boyd, and A. R. Bjorksten. Plasma drug efflux—A new approach to optimization of drug infusion for constant blood concentration of thiopental and methohexital.Anesthesiology 67:32–41 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. S. L. Shafer, L. C. Siegel, J. E. Cooke, and J. C. Scott. Testing computer-controlled infusion pumps by simulation.Anesthesiology 68:261–266 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. D. B. Raemer, A. Buschman, J. R. Varvel, B. K. Philip. M. D. Johnson, D. A. Stein, and S. L. Shafer. The prospective use of population pharmacokinetics in a computer-driven infusion system for alfentanil.Anesthesiology 73:66–72 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. M. Michiels, R. Hendriks, and J. Heykants. A sensitive radioimmunoassay for fentanyl: Plasma level in dogs and man.Eur. J. Clin. Pharmacol. 12:153–158 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. P. O. Maitre, S. Vozeh, J. Heykants, D. A. Thomson, and D. R. Stanski. Population pharmacokinetics of alfentanil: The average dose-plasma concentration relationship and interindividual variability in patients.Anesthesiology 66:3–12 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. J. C. Scott and D. R. Stanski. Decreased fentanyl and alfentanil requirements with age: A simultaneous pharmacokinetic and pharmacodynamic evaluation.J. Pharmacol. Exp. Ther. 240:159–166 (1987).

    CAS  PubMed  Google Scholar 

  9. P. O. Maitre, M. E. Ausems, S. Vozeh, and D. R. Stanski. Evaluating the accuracy of using population pharmacokinetic data to predict plasma concentrations of alfentanil.Anesthesiology 68:59–67 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. M. Gibaldi and D. Perrier.Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982.

    Google Scholar 

  11. L. Wilkinson.SYSTAT: The System for Statistics, SYSTAT, Inc., Evanston, IL, 1988.

    Google Scholar 

  12. L. B. Sheiner. The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods.Drug. Metab. Rev. 15:153–171 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. W. J. Dixon and F. J. Massey.Introduction to Statistical Analysis, 3rd ed., McGraw-Hill, New York, 1969.

    Google Scholar 

  14. R. J. Carroll and D. Ruppert.Transformation and Weighting in Regression, Chapman and Hall, London, 1988.

    Book  Google Scholar 

  15. S. Vozeh, P. O. Maitre, and D. R. Stanski. Evaluation of population (NONMEM) pharmacokinetic parameter estimates.J. Pharmacokin. Biopharm. 18:161–173 (1990).

    Article  CAS  Google Scholar 

  16. S. L. Shafer, G. M. Martinez, D. R. Stanski, and J. C. Scott. Pharmacokinetic analysis of fentanyl administered by a computer controlled infusion pump.Anesthesiology 67:A666 (1987).

    Article  Google Scholar 

  17. L. B. Sheiner and S. L. Beal. Some suggestions for measuring predictive performance.J. Pharmacokin. Biopharm. 9:503–512 (1981).

    Article  CAS  Google Scholar 

  18. P. O. Maitre and D. R. Stanski. Bayesian forecasting improves the prediction of intraoperative plasma concentrations of alfentanil.Anesthesiology 69:652–659 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. S. L. Shafer, J. R. Varvel, N. Aziz, and J. C. Scott. The performance of pharmacokinetic parameters derived from a computer controlled infusion pump.Anesthesiology 69:A460 (1988).

    Article  Google Scholar 

  20. P. Glass, J. R. Jacobs, E. D. Hawkins, B. Ginsberg, T. J. Quill, and J. G. Reeves. Accuracy and efficacy of a pharmacokinetic model-driven device to infuse fentanyl for anesthesia during general surgery.Anesthesiology 69:A290 (1988).

    Article  Google Scholar 

  21. S. L. Shafer, J. R. Varvel, N. Aziz, and J. C. Scott. Pharmacokinetics of fentanyl administered by computer-controlled infusion pump.Anesthesiology 73:1091–1102 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. P. Glass, J. R. Jacobs, L. R. Smith, B. Ginsberg, T. J. Quill, S. A. Bai, and J. G. Reves. Pharmacokinetic model-driven infusion of fentanyl: assessment of accuracy.Anesthesiology 73:1082–1090 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. R. J. Serfling.Approximation Theorems of Mathematical Statistics, Wiley, New York, 1980.

    Book  Google Scholar 

  24. P. J. Huber.Robust Statistics, Wiley, New York, 1982.

    Google Scholar 

  25. F. J. Anscombe and J. W. Tukey. The examination and analysis of residuals,Technometrics, Vol. 5, 1963.

  26. D. C. Hoaglin, F. Mosteller, and J. W. Tukey.Understanding Robust and Exploratory Data Analysis, Wiley, New York, 1983.

    Google Scholar 

  27. F. Mosteller and J. W. Tukey.Data Analysis and Regression: A Second Course, Addison Wesley, Reading, MA, 1977.

    Google Scholar 

  28. D. B. Raemer, A. Buschman, M. D. Johnson, B. K. Philip, S. L. Shafer, and D. R. Stanski. Alfentanil pharmacokinetic model applied to ambulatory surgical patients: Does a computerized infusion improve predictability?Anesthesiology 69:A243 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varvel, J.R., Donoho, D.L. & Shafer, S.L. Measuring the predictive performance of computer-controlled infusion pumps. Journal of Pharmacokinetics and Biopharmaceutics 20, 63–94 (1992). https://doi.org/10.1007/BF01143186

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01143186

Key words

Navigation