Skip to main content
Log in

Thermophysical properties data on molten semiconductors

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermophysical properties of molten semiconductors are reviewed. Published data for viscosity, thermal conductivity, surface tension, and other properties are presented. Several measurement methods often used for molten semiconductors are described. Recommended values of thermophysical properties are tabulated for Si, Ge, GaAs, InP, InSb, GaSb, and other compounds. This review shows that further measurements of thermophysical properties of GaAs and InP in the molten state are required. It is also indicated that a very limited amount of data on emissivity is available. Space experiments relating to thermophysical property measurements are described briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ρ :

Density

C p :

Specific heat

ν :

Kinematic viscosity

μ :

Dynamic viscosityμ=νρ

κ :

Thermal diffusivity

λ :

Thermal conductivityλ=κCp ρ

β :

Volumetric thermal expansion coefficient

γ :

Surface tension

dγ/dT :

Temperature coefficient of surface tension

g :

Gravitational acceleration

T :

Temperature

ΔT :

Temperature difference

L :

Characteristic dimension

References

  1. A. F. Witt, H. C. Gatos, M. Lichtensteiger, M. C. Lavine, and C. J. Herman,J. Electrochem. Soc. 122:276 (1975).

    Google Scholar 

  2. R. Krishunamurti,J. Fluid Mech. 60:285 (1973).

    Google Scholar 

  3. F. Rosenberger and G. Müller,J. Crystal Growth 65:91 (1983).

    Google Scholar 

  4. K. Kakimoto, M. Eguchi, H. Watanabe, and T. Hibiya,J. Crystal Growth 88:365 (1988).

    Google Scholar 

  5. M. Katayama, M. Kaneko, T. Horitomi, Y. Nakagawa, and L. Auguste,Proc. XI Jpn. Symp. Thermophys. Prop, (1990), p. 219.

  6. S. Nakamura, T. Hibiya, F. Yamamoto, and T. Yokota,Int. J. Thermophys. 12:783 (1991).

    Google Scholar 

  7. S. Nakamura and T. Hibiya,Proc. 8th Eur. Symp. Mater. Fluid Sci. Micrograv. (1992) (in press).

  8. V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva,Liquid Semiconductors (Plenum Press, New York, 1969).

    Google Scholar 

  9. A. R. Regel, I. A. Smirnov, and E. V. Shadrichev,Phys. Stat. Sol. 5:13 (1971).

    Google Scholar 

  10. B. J. Keene,Surface Interface Anal. 10:367 (1987).

    Google Scholar 

  11. A. Nagashima,Int. J. Thermophys. 11:417 (1990).

    Google Scholar 

  12. J. M. Grouvel and J. Kestin,Appl. Sci. Res. 34:427 (1987).

    Google Scholar 

  13. K. Kakimoto and T. Hibiya,Appl. Phys. Lett. 50:1249 (1987).

    Google Scholar 

  14. K. Kakimoto and T. Hibiya,Appl. Phys. Lett. 52:1576 (1988).

    Google Scholar 

  15. S. Ozawa, M. Eguchi, T. Fujii, and T. Fukuda,Appl. Phys. Lett. 51:197 (1987).

    Google Scholar 

  16. K. Kakimoto, M. Eguchi, H. Watanabe, and T. Hibiya,J. Crystal Growth 94:412 (1989).

    Google Scholar 

  17. B. M. Turovsky and A. P. Lyubimov,Izv. VUZov, Chern. Metallurg. 1:24 (1960).

    Google Scholar 

  18. B. M. Turovsky and I. I. Ivanova,Zhur. Ziz. Khim. 45:176 (1971).

    Google Scholar 

  19. V. M. Glazov, K. Dovletov, A. Ya. Nashelśkii, and M. M. Mamedov,Neorg. Mater. 13:34 (1977).

    Google Scholar 

  20. K. Kakimoto and T. Hibiya,J. Appl. Phys. 66:4181 (1988).

    Google Scholar 

  21. L. Battezzati and A. L. Greer,Acta Metall. 37:1791 (1989).

    Google Scholar 

  22. J. C. Brice and P. A. C. Whiffin,Solid-State Electron. 7:183 (1964).

    Google Scholar 

  23. M. G. Milvidskii and V. V. Eremeev,Sov. Phys. Solid State 6:1549 (1965).

    Google Scholar 

  24. Yu. M. Shashkov and V. P. Grishin,Sov. Phys. Solid State 8:447 (1966).

    Google Scholar 

  25. R. K. Crouch, A. L. Fripp, W. J. Debnam, R. E. Taylor, and H. Groot, inMaterials Processing in the Reduced Gravity Environment of Space, G. E. Rindone, Ed. (North-Holland, Amsterdam, 1983), p. 657.

    Google Scholar 

  26. R. E. Taylor, L. R. Holland, and R. K. Crouch,High Temp.-High Pres..17:47 (1985).

    Google Scholar 

  27. L. R. Holland and R. E. Taylor,J. Vac. Sci. Technol. A1:1615 (1983).

    Google Scholar 

  28. S. Sen, W. H. Konkel, S. J. Tighe, L. G. Bland, S. R. Sharma, and R. E. Taylor,J. Cryst. Growth 86:111 (1988).

    Google Scholar 

  29. K. Yamamoto, T. Abe, and S. Takasu,Jpn J. Appl. Phys. 30:2423 (1991).

    Google Scholar 

  30. L. R. Holland, R. P. Harris, and R. Smith,Rev. Sci. Instrum. 54:993 (1983).

    Google Scholar 

  31. S. Nakamura, T. Hibiya, and F. Yamamoto,Int. J. Thermophys. 9:933 (1988).

    Google Scholar 

  32. S. Nakamura, T. Hibiya, and F. Yamamoto,J. Appl. Phys. 68:5125 (1990).

    Google Scholar 

  33. F. Yamamoto, S. Nakamura, T. Hibiya, T. Yokota, D. Grothe, H. Harms, and P. Kyr,Proc. CSME Mech. Eng. Forum (1990), p. 1.

  34. V. I. Fedorov and V. I. Machuev,Teplofiz. Vysokikh Temp. 8:447 (1970).

    Google Scholar 

  35. Kh. I. Amirkhanov and Ya. B. Magomedov,Sov. Phys. Solid State 7:506 (1965).

    Google Scholar 

  36. Kh. I. Amirkhanov and Ya. B. Magomedov,Sov. Phys. Solid State 8:241 (1966).

    Google Scholar 

  37. V. M. Glazov, A. A. Aaivazov, and V. G. Pavlov,Sov. Phys. Semicond. 5:182 (1971).

    Google Scholar 

  38. L. P. Filippov, A. V. Arutyunov, I. N. Makarenko, I. P. Mardyking, L. I. Trukhanova, B. I. Khusainova, and R. P. Yurchak,Heat and Mass Transport (Nauki i Teknika, Minsk (1968), p. 7.

    Google Scholar 

  39. A. S. Jordan,J. Cryst. Growth 71:551 (1985).

    Google Scholar 

  40. W. D. Kingery and M. Humenik Jr.,J. Phys. Chem. 57:359 (1953).

    Google Scholar 

  41. R. Shetty, R. Balasubramanian, and W. R. Wilcox,J. Cryst. Growth 100:51 (1990).

    Google Scholar 

  42. P. H. Keck and W. V. Horn,Phys. Rev. 91:512 (1953).

    Google Scholar 

  43. S. C. Hardy,J. Cryst. Growth 69:456 (1984).

    Google Scholar 

  44. R. Shetty, R. Balasubramanian, and W. R. Wilcox,J. Cryst. Growth 100:58 (1990).

    Google Scholar 

  45. V. V. Karatev, M. G. Milvidskii, and N. Ya. Zakharova,Iz. Akad. Nauk SSSR Neorgan. Mater. 2:833 (1966).

    Google Scholar 

  46. R. Rupp and G. Müller,J. Cryst. Growth 113:131 (1991).

    Google Scholar 

  47. M. D. Amashukeli, V. V. Karataev, M. G. Kekua, M. G. Milvidskii, and D. V. Khantadze,Neorgan. Mater. 17:2126 (1981).

    Google Scholar 

  48. A. S. Popov and L. Demberel,Krist. Tech. 12:1167 (1977).

    Google Scholar 

  49. S. V. Lukin, V. I. Zhuchkov, N. A. Vatolin, and Y. S. Kozlov,J. Less Common Metals 67:407 (1979).

    Google Scholar 

  50. F. N. Tavadze, M. G. Kekua, D. V. Khantadze, T. G. Tsertsvade, inPoverkh. Yavleniya Rasplavakh N. N. Eremenko, (ed.) (Naukova Dumka, Kiev, 1968), p. 159.

    Google Scholar 

  51. V. N. Bobkovski, V. I. Kostikov, V. Y. Levin, and A. S. Tarabanov,Konstr. Mater. Osn. Grafita 5:138 (1970).

    Google Scholar 

  52. M. Brunet, J. C. Joud, N. Eustathopoulos, and P. Desre,J. Less Common Metals 51:69 (1977).

    Google Scholar 

  53. V. B. Lazarev,Theoret. Exp. Chem. 3:294 (1967).

    Google Scholar 

  54. L. D. Lucas,Mem. Sci. Rev. Metallurg. 61:1 (1964).

    Google Scholar 

  55. A. S. Jordan,J. Cryst. Growth 49:631 (1979).

    Google Scholar 

  56. V. M. Glazov, V. B. Koltsov, and I. R. Suleimanov,Sov. Phys. Semicond. 19:1322 (1985).

    Google Scholar 

  57. V. M. Glazov, V. B. Koltsiv, and V. A. Kurbatov,Sov. Phys. Semicond. 22:202 (1988).

    Google Scholar 

  58. V. M. Glazov, S. G. Kim, and K. B. Nurov,Sov. Phys. Semicond. 23:1136 (1989).

    Google Scholar 

  59. V. V. Baidov and M. B. Gitis,Sov. Phys. Semicond. 4:825 (1970).

    Google Scholar 

  60. V. M. Glazov, S. G. Kim, and T. Suleimanov,Sov. Phys. Semicond. 22:1231 (1988).

    Google Scholar 

  61. P. Sommelet and R. L. Orr,J. Chem. Eng. Data 11:64 (1966).

    Google Scholar 

  62. B. D. Lichter and P. Sommelet,Trans. Metallurg. Soc. AIME 245:99 (1969).

    Google Scholar 

  63. B. D. Lichter and P. Sommelet,Trans. Metallurg. Soc. AIME 245:1021 (1969).

    Google Scholar 

  64. Landolt-Bornstein Numerical Data & Functional Relationship in Science and Technology, New Series, Group 3 Crystal and Solid State Physics, Vol. 17 (1982), p. 16.

  65. W. E. Langlois,J. Cryst. Growth 56:15 (1982).

    Google Scholar 

  66. K. Kakimoto, P. Nicodème, M. Lecomte, F. Dupret, and M. J. Crochet,J. Cryst. Growth 114:715 (1991).

    Google Scholar 

  67. D. R. Hamilton and R. G. Seidensticker,J. Appl. Phys. 34:1450 (1963).

    Google Scholar 

  68. Z. Q. Wang, D. Stroud, and A. J. Markworth,Phys. Rev. B 40:3129 (1989).

    Google Scholar 

  69. I. Nakatani, K. Masumoto, S. Takahashi, I. Nishida, T. Kiyoawa, and N. Koguchi,J. Jpn. Inst. Metals 54:1025 (1990).

    Google Scholar 

  70. K. Kinoshita and T. Yamada,J. Cryst. Growth 96:953 (1989).

    Google Scholar 

  71. Y. Malmejac and G. Frohberg,Fluid Sci. Mater. Sci. Space, H. U. Walter, ed. (Springer-Verlag, New York, 1987), p. 159.

    Google Scholar 

  72. B. Feuerbacher and D. M. Herrlach, 40th Congress IAF, IAF-89-429 (1989).

  73. A. Cröll, G. Müller, W. Sebert, and R. Nitsche,Mater. Res. Bull. 24:995 (1989).

    Google Scholar 

  74. S. Krishnan, R. H. Hauge, and J. L. Margrave,Proceedings, Second Noncontact Temperature Measurement Workshop (Pasadena, Calif., 1989), p. 110.

  75. L. N. Hjellming and J. S. Walker,J. Cryst. Growth 87:18 (1988).

    Google Scholar 

  76. Z. Q. Wang and D. Stroud,Phys. Rev. B 38:1384 (1988).

    Google Scholar 

  77. Z. Q. Wang and D. Stroud,Phys. Rev. B 42:5353 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, S., Hibiya, T. Thermophysical properties data on molten semiconductors. Int J Thermophys 13, 1061–1084 (1992). https://doi.org/10.1007/BF01141216

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01141216

Key words

Navigation