Topographic component (Parallel Factor) analysis of multichannel evoked potentials: Practical issues in trilinear spatiotemporal decomposition
 Aaron S. Field,
 Daniel Graupe
 … show all 2 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessSummary
We describe a substantive application of the trilinear topographic components /parallel factors model (TC/PARAFAC, due to Möcks/Harshman) to the decomposition of multichannel evoked potentials (MEP's). We provide practical guidelines and procedures for applying PARAFAC methodology to MEP decomposition. Specifically, we apply techniques of data preprocessing, orthogonality constraints, and validation of solutions in a complete TC analysis, for the first time using actual MEP data. The TC model is shown to be superior to the traditional bilinear principal components model in terms of data reduction, confirming the advantage of the TC model's added assumptions. The model is then shown to provide a unique spatiotemporal decomposition that is reproducible in different subject groups. The components are shown to be consistent with spatial/temporal features evident in the data, except for an artificial component resulting from latency jitter. Subject scores on this component are shown to reflect peak latencies in the data, suggesting a new aspect to statistical analyses based on subject scores. In general, the results support the conclusion that the TC model is a promising alternative to principal components for data reduction and analysis of MEP's.
 Biologic Systems Corp. Guidelines for Normative Data Collection: Brain Atlas Systems. Mundelein, Illinois, July 1988.
 Carroll, J. D., Chang, J. J. (1970) Analysis of individual differences in multidimensional scaling via an Nway generalization of "EckartYoung" decomposition. Psychometrika 35: pp. 283319
 Carroll, J. D., Pruzansky, S. The CANDECOMPCANDELINC family of models and methods for multidimensional data analysis. In: Law, H. G., Snyder, C. W., Hattie, J. A., McDonald, R. P. eds. (1984) Research Methods for Multimode Data Analysis. Praeger, New York, pp. 372402
 Donchin, E., Heffley, E. F. Multivariate analysis of eventrelated potential data: A tutorial review. In: Otto, D. A. eds. (1978) Multidisciplinary Perspectives in EventRelated Brain Potential Research. U.S. Gov. Printing Office, Washington, DC, pp. 555572
 Field, A. S. Applied Topographic Component / Parallel Factor Analysis for Spatiotemporal Decomposition of Multichannel Evoked Potentials. Ph.D. thesis, Department of Bioengineering, University of Illinois at Chicago, 1991.
 Field, A. S., Graupe, D. (1990) Topographic components analysis of evoked potentials: Estimation of model parameters and evaluation of parameter uniqueness. J. Biomed. Eng. 12: pp. 287300
 Field, A. S. and Graupe, D. Topographic components analysis of evoked potentials: Parameter estimation and some preliminary results. Proc. IEEE Int. Symp. Circ. Syst. (ISCAS), New Orleans, 1990b: 2049–2052.
 Glaser, E. M., Ruchkin, D. S. (1976) Principles of Neurobiological Signal Analysis. Academic Press, New York
 Harner, R. N. (1990) Singular value decompositionA general linear model for analysis of multivariate structure in the electroencephalogram. Brain Topography 3: pp. 4347
 Harshman, R. A. (1970) Foundations of the PARAFAC procedure: Models and conditions for an ‘explanatory’ multimodal factor analysis. UCLA Working Papers in Phonetics (University Microfilms #10,085) 16: pp. 184
 Harshman, R. A. ‘How can I know if it's "real?"’ A catalog of diagnostics for use with threemode factor analysis and multidimensional scaling. In: Law, H. G., Snyder, C. W., Hattie, J. A., McDonald, R. P. eds. (1984) Research Methods for Multimode Data Analysis. Praeger, New York, pp. 566591
 Harshman, R. A., Sarbo, W. S. An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and splithalf diagnostic techniques. In: Law, H. G., Snyder, C. W., Hattie, J. A., McDonald, R. P. eds. (1984) Research Methods for Multimode Data Analysis. Praeger, New York, pp. 602642
 Harshman, R. A., Lundy, M. E. Data preprocessing and the extended PARAFAC model. In: Law, H. G., Snyder, C. W., Hattie, J. A., McDonald, R. P. eds. (1984) Research Methods for Multimode Data Analysis. Praeger, New York, pp. 216281
 Harshman, R. A., Lundy, M. E. The PARAFAC model for threeway factor analysis and multidimensional scaling. In: Law, H. G., Snyder, C. W., Hattie, J. A., McDonald, R. P. eds. (1984) Research Methods for Multimode Data Analysis. Praeger, New York, pp. 123215
 Lehmann, D. Principles of spatial analysis. In: Gevins, A. S., Remond, A. eds. (1987) Methods of Analysis of Brain Electrical and Magnetic Signals, volume 1 of Handbook of Electroencephalography and Clinical Neurophysiology (Revised Series). Elsevier, Amsterdam, pp. 309354
 Lundy, M. E., Harshman, R. A. (1985) Reference Manual for the PARAFAC Analysis Package. Scientific Software Associates, London, Ontario, Canada
 Möcks, J. (1986) The influence of latency jitter in principal component analysis of eventrelated potentials. Psychophysiol. 23: pp. 480484
 Möcks, J. (1988) Decomposing eventrelated potentials: A new topographic components model. Biol. Psychol. 26: pp. 199215
 Möcks, J. (1988) Topographic components model for eventrelated potentials and some biophysical considerations. IEEE Trans. Biomed. Eng. 35: pp. 482484
 Möcks, J., Verleger, R. (1986) Principal component analysis of eventrelated potentials: A note on misallocation of variance. Electroenceph. Clin. Neurophysiol. 65: pp. 393398
 Nunez, P. L. (1981) Electric Fields of the Brain. Oxford Univ. Press, New York
 Offner, F. F. (1950) The EEG as potential mapping: The value of the average monopolar reference. Electroenceph. Clin. Neurophysiol. 2: pp. 215216
 Rabiner, L. R., Schafer, R. W. (1978) Digital Processing of Speech Signals. PrenticeHall, New Jersey
 Skrandies, W. (1989) Data reduction of multichannel fields: Global field power and principal component analysis. Brain Topography 2: pp. 7380
 Skrandies, W., Lehmann, D. (1982) Spatial principal components of multichannel maps evoked by lateral visual halffield stimuli. Electroenceph. Clin. Neurophysiol. 54: pp. 662667
 Wood, C. C., McCarthy, G. (1984) Principal component analysis of eventrelated potentials: Simulation studies demonstrate misallocation of variance across components. Electroenceph. Clin. Neurophysiol. 59: pp. 249260
 Title
 Topographic component (Parallel Factor) analysis of multichannel evoked potentials: Practical issues in trilinear spatiotemporal decomposition
 Journal

Brain Topography
Volume 3, Issue 4 , pp 407423
 Cover Date
 19910601
 DOI
 10.1007/BF01129000
 Print ISSN
 08960267
 Online ISSN
 15736792
 Publisher
 Kluwer Academic PublishersHuman Sciences Press
 Additional Links
 Topics
 Keywords

 Evoked potentials
 Principal components
 Topographic components
 Spatiotemporal analysis
 Decomposition
 Industry Sectors
 Authors

 Aaron S. Field ^{(1)}
 Daniel Graupe ^{(1)}
 Author Affiliations

 1. Department of Electrical Engineering and Computer Science and Department of Bioengineering (M/C 154), The University of Illinois at Chicago, Box 4348, 60680, Chicago, Illinois, USA