Skip to main content
Log in

A dynamical test of phase transition order: New things in old places or old wine in new bottles

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We first discuss nonlinear aspects of phase transition theory applied to a particular liquid crystal phase transition. A simple derivation is given to show how two coupled Goldstone modes (one appearing as gauge fluctuations of the ordered phase) can force a phase transition, against all expectations, to take place discontinuously (theory of Halperin, Lubensky, and Ma)-but the discontinuity may be immeasurably small. Then, we describe a new dynamical test of phase transition order, developed by Cladiset al., that turns out to be more sensitive than x-ray diffraction and adiabatic calorimetry. Quantitative data found by this new method are in excellent agreement with the measurements of adiabatic calorimetry and x-ray diffraction as well as expectations implicit in the predictions of HLM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Goldhaber, Private communication.

  2. P. G. de Gennes,Physics of Liquid Crystals (Oxford University Press, 1976).

  3. A. B. Pippard,Classical Thermodynamics (Cambridge University Press, 1966).

  4. B. I. Halperin, T. C. Lubensky, and S. K. Ma,Phys. Rev. Lett. 32:292 (1974);

    Google Scholar 

  5. B. I. Halperin and T. C. Lubensky,Solid State Commun. 14:997 (1974).

    Google Scholar 

  6. D. L. Johnson,J. Chim. Phys. 80:45 (1983), L. J. Martinez-Miranda, A. R. Kortan, and R. J. Birgenau,Phys. Rev. A 36:2372 (1987) and references therein; see also M. A. Anisimov,Molecular Crystals Liquid Crystals (1988).

    Google Scholar 

  7. T. C. Lubensky,J. Chem. Phys. 80:6 (1983).

    Google Scholar 

  8. J. Thoen, H. Marynissen, and W. van Dael,Phys. Rev. Lett. 52:204 (1984);

    Google Scholar 

  9. H. Marynissen, J. Thoen, and W. van Dael,Mol. Cryst. Liq. Cryst. 124:195 (1985);

    Google Scholar 

  10. J. Thoen, H. Marynissen, and W. van Dael,Phys. Rev. 26A:2886 (1982).

    Google Scholar 

  11. B. M. Ocko, R. J. Birgeneau, and J. D. Litster,Z. Phys. B 62:487 (1986).

    Google Scholar 

  12. M. A. Anisimov, V. P. Voronov, E. E. Gorodetskii, V. E. Podnek, and F. Kholmudorov,JETP Lett. 45:425 (1987) [Pisma Zh. Eksp. Teor. Fiz. 45:336 (1987)].

    Google Scholar 

  13. P. E. Cladis, W. van Saarloos, D. A. Huse, J. S. Patel, J. W. Goodby, and P. L. Finn,Phys. Rev. Lett. 62:1764 (1989).

    Google Scholar 

  14. A. Anisimov, P. E. Cladis, E. E. Gorodetskii, D. A. Huse, V. E. Podneks, V. G. Taratuta, W. van Saarloos, and V. P. Voronov,Phys. Rev. A 41:6749 (1990).

    Google Scholar 

  15. David L. Goodstein,States of Matter (Prentice-Hall, Englewood Cliffs, New Jersey, 1975).

    Google Scholar 

  16. L. Landau and L. Lifshitz,Statistical Physics (Pergamon, New York, 1980), Vol. 5, p. 258.

    Google Scholar 

  17. P. Pfeuty and G. Toulouse,Introduction to the Renormalization Group and to Critical Phenomena (Wiley, New York, 1977).

    Google Scholar 

  18. P. W. Anderson, inSymmetries and Broken Symmetries in Condensed Matter Physics, N. Boccara, ed. (IDSET, Paris, 1981).

    Google Scholar 

  19. Shang-Keng Ma,Statistical Mechanics (World Scientific, Singapore, 1985).

    Google Scholar 

  20. W. MacMillan,Phys. Rev. A 6:936 (1972).

    Google Scholar 

  21. P. G. de Gennes,Solid Stale Commun. 10:753 (1972).

    Google Scholar 

  22. G. I. Taylor,The Scientific Papers of G. I. Taylor: III Aerodynamics and the Mechanics of Projectiles and Explosions, G. K. Batchelor, ed. (Cambridge University Press, Cambridge, 1963), pp. 493ff, 510ff; G. I. Taylor,Proc. Roy. Soc. A 101:159, 175 (1950).

    Google Scholar 

  23. J. Fineberg and V. Steinberg,Phys. Rev. Lett. 58:1332 (1987).

    Google Scholar 

  24. R. B. Griffiths,J. Chem. Phys. 60:195 (1974).

    Google Scholar 

  25. G. Dee and J. S. Langer,Phys. Rev. Lett. 50:383 (1983).

    Google Scholar 

  26. E. Ben-Jacob, H. R. Brand, G. Dee, L. Kramer, and J. S. Langer,Physica 14D:348 (1985); W. van Saarloos,Phys. Rev. Lett. 58:2571 (1987).

    Google Scholar 

  27. J. S. Patel, T. M. Leslie and J. W. Goodby,Ferroelectrics 59:137 (1984).

    Google Scholar 

  28. J. Bechhoeffer, Private communication.

  29. M. Hara, H. Takezoe, and A. Fukuda,Japan. J. Appl. Phys. 25:1756 (1986); G. J. Kruger,Phys. Rep. 82C:249 (1982).

    Google Scholar 

  30. J. Q. Broughton, G. H. Gilmer, and K. A. Jackson,Phys. Rev. Lett. 49:1496 (1982).

    Google Scholar 

  31. M. O. Thompson, P. H. Bucksbaum, and J. Bokor, inEnergy Beam-Solid Interactions and Transient Thermal Processing, D. K. Biegelsen, G. A. Rozgonyi, and C. V. Shank, eds. (Elsevier, 1985), p. 181.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is the text of an after-banquet talk given at the CNLS Workshop on the Dynamics of Concentrated Systems.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cladis, P.E. A dynamical test of phase transition order: New things in old places or old wine in new bottles. J Stat Phys 62, 899–925 (1991). https://doi.org/10.1007/BF01128168

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01128168

Key words

Navigation