Skip to main content
Log in

Packing of bimodal mixtures of colloidal silica

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this work was to determine the influence of the size distribution of silica powders on the characteristics of the resultant green bodies obtained by colloidal filtration. In order properly to investigate the scientific relationships between the forming parameters and the nature of the particle packing, a model ceramic material was chosen, i.e. monosized (100 and 10 nm) spherical powders of SiO2 and colloidal filtration under 3.45 MPa was used to cast monomodal and bimodal mixtures of silica sols. The electrophoretic and rheological behaviour of those systems have been investigated. The permeability as well as the pore size distribution was found to decrease as the volume faction of fines increased (to 30%). The evolution of the density as a function of the volume fraction of fines follows the behaviour observed for the packing of bimodal mixtures of hard spheres. The systems with only one size particle were found to pack with densities close to that of random close packing. Two dimensional computer simulations and correlation to the experimental results showed that a model of “triangular” pores is preferred to a model of “square” pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. L. Kennard, in “Ceramic processing”, Vol. 7 (1986) p. 1095.

    Google Scholar 

  2. J. A. Mangels,ibid.“ Vol. 7 (1986) p. 1112.

    Google Scholar 

  3. F. F. Lange,J. Amer. Ceram. Soc. 67 (1984) 83.

    Google Scholar 

  4. W. D. Kingery andB. Francois, in “Sintering and related phenomena”, edited by G. C. Kuczynske, N. A. Hooton, G. F. Gibbons (Gordon and Breach, NY, 1967) p. 471–98.

    Google Scholar 

  5. R. M. Cannon, in “Oxidation of non-oxide ceramics” edited by T. E. M. Mitchellet al. (Case-Western Reserve University, report to Air Force Office of Scientific Research, Contract E-49620-78-C0053, June, 1981).

  6. J. S. Haggerty, Energy Laboratory Report, MIT-EL 82-002, DARPA N00014-77-C-0581 (MIT, Cambridge, MA, 1982).

    Google Scholar 

  7. C. Herring,J. Appl. Phys. 21 (1950) 301.

    Google Scholar 

  8. E. Matijevic,Acc. Chem. Res. 14 (1981) 22.

    Google Scholar 

  9. W. Stober, A. Fink, E. Bohn,J. Colloidal Interface Sci. 26 (1968) 62.

    Google Scholar 

  10. K. S. Mazdiyasni, in “Proceedings of the Materials Research Society Symposia”, 1984, Vol. 32, (Elsevier Science, New York 1984) p. 175.

    Google Scholar 

  11. E. A. Barringer andH. K. Bowen, in Proceedings of the International Institute for the Sciences of Sintering, Belgrade, Yugoslavia, 1983.

  12. E. A. Barringer, R. Brook, andH. K. Bowen, in “Proceedings of the Sixth International Conference on Sintering and Related Phenomena, including Heterogeneous Catalysts”, Notre Dame, Indiana, June, 1983.

    Google Scholar 

  13. E. A. Barringer andH. K. Bowen,Langmiur 1 (1985) 414.

    Google Scholar 

  14. Idem. ibid. 1 (1985) 421.

    Google Scholar 

  15. B. Fegley, Jr., E. A. Barringer, andH. K. Bowen,J. Amer. Ceram. Soc. (1984) C114.

  16. E. A. Barringer, N. Jubb, B. Fegley, R. L. Pober, andH. K. Bowen, in “Ultrastructure processing of ceramics, glasses, and composites”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1984) p. 315.

    Google Scholar 

  17. W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, andR. A. Marra,J. Amer. Ceram. Soc. 65 (1982) 324.

    Google Scholar 

  18. A. J. Kurd, in “Proceedings of the Materials Research Society Symposia”, Vol. 73 (Elsevier Science, New York, 1986) p. 345.

    Google Scholar 

  19. H. K. Bowen, in “Proceedings of the Materials Research Society Symposia”, Vol. 24 (Elsevier Science, New York, 1984) p. 1.

    Google Scholar 

  20. F. F. Lange,J. Amer. Ceram. Soc. 72 (1989) 3.

    Google Scholar 

  21. J. E. Ritter, S. V. Nair, P. Gennari, W. A. Dunlay, J. S. Haggerty, andG. J. Garvey,ibid..

    Google Scholar 

  22. S. C. Danforth andJ. S. Haggerty,ibid. 66 (1983) C58.

    Google Scholar 

  23. S. C. Danforth andM. H. Richman,Bull. Amer. Ceram. Soc. 62 (4) (1983) 501.

    Google Scholar 

  24. I. A. Aksay, in “Advances in ceramics”, Vol. 9. “Forming of Ceramics”, edited by J. A. Mangels (American Ceramic Society, Westerville, Ohio, 1984).

    Google Scholar 

  25. E. Liniger, R. Raj,J. Amer. Ceram. Soc. 70,11 (1987), 843.

    Google Scholar 

  26. R. K. McGeary,ibid. 44 (1961) 513.

    Google Scholar 

  27. C. C. Furnas,Ind. Engng Chem. 23 (1931) 1052.

    Google Scholar 

  28. A. E. R. Westman andH. R. Hugill,J. Amer. Ceram. Soc. 13 (1930) 767.

    Google Scholar 

  29. H. E. White andS. F. Walton,ibid. 20 (1937) 155.

    Google Scholar 

  30. R. K. Iler, “The Chemistry of Silica” (Wiley, New York, 1979).

    Google Scholar 

  31. F. M. Tiller, C. S. Yeh, C. D. Tsai, andW. Chen, in “Proceedings of the Fourth World Filtration Congress”, Ostend, Belgium, 19–25 April, 1986.

  32. G. D. Scott,Nature 188 (1960) 908.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier, F.G.R., Danforth, S.C. Packing of bimodal mixtures of colloidal silica. J Mater Sci 26, 6035–6043 (1991). https://doi.org/10.1007/BF01113880

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113880

Keywords

Navigation