Theoretica chimica acta

, Volume 87, Issue 4, pp 277–292

The activation of the C-H bond in acetylene by second row transition metal atoms

Authors

  • P. E. M. Siegbahn
    • Institute of Theoretical PhysicsUniversity of Stockholm
Article

DOI: 10.1007/BF01113384

Cite this article as:
Siegbahn, P.E.M. Theoret. Chim. Acta (1994) 87: 277. doi:10.1007/BF01113384

Summary

The C-H activation reaction of acetylene by second row transition metal atoms has been studied including electron correlation of all valence electrons. Binding energies have been computed for both π-coordinated complexes and C-H insertion products. It is found that for most atoms the π-coordinated complexes are thermodynamically favoured, just as in the case for the corresponding ethylene reaction. The barrier height for the C-H insertion increases from acetylene to ethylene and to methane. This is in line with the experimental finding that there should be an inverse relation between C-H bond strengths and the difficulty to activate these bonds. To explain the detailed differences between the C-H activation of acetylene and ethylene, the interaction with two, rather than one, π- and π*-orbitals for acetylene is of key importance. The barrier height for the acetylene reaction increases significantly between niobium and molybdenum going to the right in the periodic table, just as for all oxidative addition reactions previously studied. The origin of this increase is that noibium has one empty 4d-orbital but for molybdenum all 4d-orbitals are occupied. Rhodium has the lowest barrier for C-H activation for all systems studied.

Key words

Acetylene C-H bond 2nd row transition metals Activation

Copyright information

© Springer-Verlag 1994