Skip to main content
Log in

Parametric study of the anode of an implantable biological fuel cell

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, electrochemical oxidation of glucose at the concentration level present in human venous plasma is discussed, with the object of determining the feasibility of constructing an implantable fuel cell for powering a prosthetic heart. The model anode considered consists of a diffusing membrane, to prevent blood contact, backed by a porous electrode structure. The latter is assumed to consist of parallel tubular pores of length equal to the electrode thickness. The variation of membrane and electrode parameters and rate constants for glucose oxidation are considered as functions of reaction order and oxidation product under different flow conditions. It is shown that the least optimistic case, oxidation of glucose only to gluconic acid, is apparently marginally feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

Area

C A :

Concentration of glucose

C 0 :

Total flux reference concentration

D :

Diffusivity

F :

Faraday's constant

G :

Glucose conversion rate

i :

Current density

k 1 :

Dimensionless rate constant, zero-order reaction

K 2 :

Dimensionless rate constant, first order reaction

k :

Rate constant

k s :

Surface-based rate constant

k v :

Volume-based rate constant

l :

Pore length

M :

1/Pe m

m :

Reaction order

N :

1Pe p

n :

Number of electrons in overall reaction

Pe :

Mass transfer Peclet number

R :

Gas constant

r :

Radius

T :

Temperature

t :

Time, membrane thickness

U :

Velocity

V :

Potential, Volts

V c :

Catalyst volume

V p :

Pore volume

V t :

Total volume of electrode

x :

Axial distance

y :

Reduced concentration,C A/CO

Z :

Dimensionless axial distance

i:

interface

m:

membrane, or in membrane pore

o:

initial condition

p:

pore, or in pore

α :

Electrochemical transfer coefficient

ε :

porosity

References

  1. ‘Artificial Heart Devices and Systems: A Conceptual Phase Study’, Contract No. PH 43-65-1058, Stanford Research Institute (January 1966).

  2. F. N. Huffman, R. J. Harvey, and S. S. Kitrilakis, ‘Design of an Implantable, Rankine-Cycle, Radio-isotope Power Source’. Paper presented at theIntersociety Energy Conversion Engineering Conference, Miami Beach, Florida (August 1967) p. 750.

  3. M. Beltzer,J. Electrochem. Soc.,114 (1967) 1200.

    Google Scholar 

  4. R. F. Drake, ‘Implantable Fuel Cell For an Artificial Heart’,Proc. The Artificial Heart Program Conference, Washington, D.C. (June 1969) p. 869.

  5. J. Batzold and M. Beltzer, ‘Feasibility Studies — Implantable Biological Fuel Cell’,ibid., p. 817.

  6. A. Kozawa, V. E. Zilionis, R. J. Brodd, and R. A. Powers, ‘Search For a Specific Catalyst for Electrochemical Oxygen Reduction In Neutral NaCl Solution’,ibid., p. 849.

  7. ‘Second Annual Summary Report: Implantable Fuel Cell For An Artificial Heart’, Contract No. PH 43-66-976, Monsanto Research Corporation, (July 1968).

  8. A. J. Appleby, D. Y. C. Ng, S. K. Wolfson, Jr., and H. Weinstein, ‘An Implantable Biological Fuel Cell With An Air-Breathing Cathode’,Proc. 4th Intersociety Energy Conversion Engineering Conference, Washington, D.C. (September 1969) p. 346.

  9. J. O'M. Bockris, B. J. Piersma and E. Gileadi,Electrochim. Acta,9 (1964) 1329.

    Google Scholar 

  10. M. L. B. Rao, and R. G. Drake,J. Electrochem. Soc.,116 (1969) 334.

    Google Scholar 

  11. W. J. Latimer, ‘Oxidation Potentials’, 2nd ed., Prentice Hall, New York (1952) p. 128.

    Google Scholar 

  12. C. W. Mansfield, ‘Oxidation and Reduction Potentials of Organic Systems’, Williams and Wilkins Co., Baltimore (1960).

    Google Scholar 

  13. A. J. Appleby and C. Van Drunen,J. Electrochem. Soc.,118 (1971) 95.

    Google Scholar 

  14. S. J. Yao, A. J. Appleby, A. Geisel, H. R. Cash, and S. K. Wolfson, Jr.,Nature,224 (1969) 921.

    PubMed  Google Scholar 

  15. J. O'M. Bockris and H. Wroblowa,J. Electroanal. Chem.,7 (1964) 428.

    Google Scholar 

  16. A. T. Kuhn, H. Wroblowa, and J. O'M. Bockris,Trans. Faraday Soc.,63 (1967) 1458.

    Google Scholar 

  17. J. R. Pappenheimer and E. J. Landis, in ‘Handbook of Physiology’, Vol. II., p. 961–1034, P. Dow, Editor, American Physiological Society, Washington, D.C. (1963).

    Google Scholar 

  18. J. F. Wehner and R. H. Wilhelm,Chem. Eng. Sci.,6 (1956) 89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appleby, A.J., Ng, D.Y.C. & Weinstein, H. Parametric study of the anode of an implantable biological fuel cell. J Appl Electrochem 1, 79–90 (1971). https://doi.org/10.1007/BF01111855

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01111855

Keywords

Navigation