Skip to main content
Log in

On the derivation of the generalized Langevin equation for interacting Brownian particles

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The main result of this paper is a derivation of a generalized nonlinear Langevin equation (GLE) forn interacting particles in a bath. A consequence of the derivation is that the exact form of the (generalized) fluctuation-dissipation theorem is obtained. We discuss also the relation between the memory kernel of the GLE and some corresponding correlation functions which can be easily obtained in a molecular dynamics computer experiment. In the same spirit it is shown that the approach applies to a Brownian particle subjected to a stationary external field. The technique presented in a previous paper to simulate generalized Brownian dynamics can be easily extended to the present case. Our derivation intends to clarify the uses and (possibly) abuses of the Langevin equation in Brownian dynamics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Turq, F. Lantelme, and H. L. Friedman,J. Chem. Phys. 66:3039 (1977).

    Google Scholar 

  2. D. L. Ermak and J. A. McCammon,J. Chem. Phys. 69:1352 (1978).

    Google Scholar 

  3. D. Ceperley, M. M. Kalos, and J. Lebowitz,Phys. Rev. Lett. 41:313 (1978).

    Google Scholar 

  4. R. M. Levy, M. Karplus, and J. A. McCammon,Chem. Phys. Lett. 65:4 (1979).

    Google Scholar 

  5. E. Helfand,J. Chem. Phys. 69:1010 (1978).

    Google Scholar 

  6. A. Diebold, S. A. Adelman, and Y. Mou,J. Chem. Phys. 71:3236 (1979).

    Google Scholar 

  7. M. Shugard, J. Tully, and A. Nitzan,J. Chem. Phys. 64:336 (1978);

    Google Scholar 

  8. A. Nitzan, M. Shugard, and J. Tully,J. Chem. Phys. 64:2525 (1978).

    Google Scholar 

  9. M. R. Pear and J. H. Weiner,J. Chem. Phys. 69:785 (1978).

    Google Scholar 

  10. S. A. Adelman,J. Chem. Phys. 71:4471 (1979).

    Google Scholar 

  11. G. Ciccotti and J. P. Ryckaert,Mol. Phys.,40: 141 (1980).

    Google Scholar 

  12. B. J. Berne, ed.,Modem Theoretical Chemistry, Vol. 6,Statistical Mechanics, Part B: Time-dependent Processes (Plenum Press, New York, 1977).

    Google Scholar 

  13. H. Mori,Progr. Theor. Phys. 33:423 (1965);

    Google Scholar 

  14. H. Mori,Progr. Theor. Phys. 34:399 (1965).

    Google Scholar 

  15. J. M. Deutch and I. Oppenheim,J. Chem. Phys. 54:3547 (1971).

    Google Scholar 

  16. T. J. Murphy and J. L. Aguirre,J. Chem. Phys. 57:2098 (1972).

    Google Scholar 

  17. G. Wilemski,J. Stat. Phys. 14:153 (1976).

    Google Scholar 

  18. D. Chandler and L. R. Pratt,J. Chem. Phys. 65:2925 (1976).

    Google Scholar 

  19. R. Kubo,Rep. Prog. Phys. 29:255 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciccotti, G., Ryckaert, J.P. On the derivation of the generalized Langevin equation for interacting Brownian particles. J Stat Phys 26, 73–82 (1981). https://doi.org/10.1007/BF01106787

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106787

Key words

Navigation