Skip to main content
Log in

Assessing impacts of climate change on forests: The state of biological modeling

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Models that address the impacts of climate change on forests are reviewed at four levels of biological organization: global, regional or landscape, community, and tree. The models are compared for their ability to assess changes in fluxes of biogenic greenhouse gases, land use, patterns of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models have been used to consider more impacts than the other models. The development of landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research needing additional effort are identified: (1) linking socioeconomic and ecologic models; (2) interfacing forest models at different scales; (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes; and (4) relating information from different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ågren, G. I., McMurtrie, R. E., Parton, W. J., Pastor, J., and Shugart, H. H.: 1991, ‘State-of-the-Art of Models of Production-Decomposition Linkages in Conifer and Grassland Ecosystems’,Ecol. Appli. 1, 118–138.

    Google Scholar 

  • Arney, J. D.: 1971, ‘Computer Simulation of Douglas-Fir Tree and Stand Growth’, Ph.D. Thesis, School of Forestry, Oregon State University, Corvallis, OR.

    Google Scholar 

  • Barnthouse, L. W.: 1992, ‘The Role of Models in Ecological Risk Assessment: A 1990's Perspective’,Environm. Toxicol. Chemistry 11, 1751–1760.

    Google Scholar 

  • Belcher, D. M., Holdaway, M. R., and Brand, G. J.: 1982, ‘A Description of STEMS - The Stand and Tree Evaluation and Modeling System’, USDA For. Serv. Gen. Tech. Rep. NC-79.

  • Bossel, H., Holger, K., Schafer, H., and Trost, N.: 1991, ‘Simulation of Forest Stand Dynamics, Using Real-Structure Process Models’,Forest Ecol. Managem. 42, 3–21.

    Google Scholar 

  • Botkin, D. B.: 1992,Forest Dynamics: An Ecological Model, Oxford University Press.

  • Botkin, D. B. and Nisbet, R. A.: 1992, ‘Projecting the Effects of Climate Change on Biological Diversity in Forests’, in Peters, R. L. and Lovejoy, T. E. (eds.),Global Warming and Biological Diversity, Yale University Press, New Haven, pp. 277–296.

    Google Scholar 

  • Botkin, D. B., Janak, J. F., and Wallis, J. R.: 1972, ‘Some Ecological Consequences of a Computer Model of Forest Growth’,J. Ecol. 60(3, 849–872.

    Google Scholar 

  • Brzeziecki, B., Kienast, F., and Wildi, O.: 1993, ‘Simulated Map of the Potential Natural Forest Vegetation of Switzerland’,J. Vegetat. Sci. 4, 499–508.

    Google Scholar 

  • Clay, D. E., Clapp, C. E. Molina, J. A. E., and Linden, D. R.: 1985, ‘Nitrogen-Tillage-Residue Management. I. Simulating Soil and Plant Behavior by the Model NCSWAP’,Plant Soil 84, 67–77.

    Google Scholar 

  • Collatz, G. J., Bell, J. T., Grivet, C., and Berry, J. A.: 1991, ‘Physiological and Environmental Regulation of Stomatal Conductance, Photosynthesis and Transpiration: A Model That Includes a Laminar Boundary Layer’,Agric. For. Meteorol. 54, 107–136.

    Google Scholar 

  • Dale, V. H.: 1987, ‘Using a Model of Forest Community Dynamics for Decision Making’,Proceedings of the 1987 Forestry Issues Conference, Pennsylvania State University, University Park, pp. 210–219.

    Google Scholar 

  • Dale, V. H. and Doyle, T. W.: 1987, ‘The Role of Stand History in Assessing Forest Impacts’,Environm. Managem. 11(3, 351–357.

    Google Scholar 

  • Dale, V. H. and Franklin, J. F.: 1989, ‘Potential Effects of Climate Change on Stand Development in the Pacific Northwest’,Canad. J. Forest Res. 19, 1581–1590.

    Google Scholar 

  • Dale, V. and Gardner, R. H.: 1987, ‘Assessing Regional Impacts of Growth Declines Using a Forest Succession Model’,J. Environm. Managem. 24, 83–93.

    Google Scholar 

  • Dale, V. H., Doyle, T. W., and Shugart, H. H.: 1985, ‘A Comparison of Tree Growth Models’,Ecol. Model. 29, 145–169.

    Google Scholar 

  • Dale, V. H., Jager, H. I., Gardner, R. H., and Rosen, A. E.: 1988, ‘Using Sensitivity Analysis to Improve Predictions of Broad-Scale Forest Development’,Ecol. Model. 42, 165–178.

    Google Scholar 

  • Dale, V. H., Gardner, R. H., DeAngelis, D. L., Eagar, C., and Webb, J. W.: 1991, ‘Elevation-Mediated Effects of Balsam Woolly Adelgid on Southern Appalachian Spruce-Fir Forests’,Canad. J. Forest Res. 21, 1639–1648.

    Google Scholar 

  • Dale, V. H., Southworth, F., and O'Neill, R. V.: 1993a, ‘Simulating Spatial Patterns of Land-Use Change in Rondônia, Brazil’, in Gardner, R. H. (ed.),Predicing Spatial Effects in Ecological Systems, American Mathematical Society, pp. 29-56.

  • Dale, V. H., O'Neill, R. V., Pedlowski, M. A., and Southworth, F.: 1993b, ‘Causes and Effects of Land-Use Change in Central Rondônia, Brazil’,Photogramm. Engin. Remote Sens. 59, 997–1005.

    Google Scholar 

  • Davis, M. B.: 1981, ‘Quaternary History and the Stability of Forest Communities’, in West, D. C., Shugart, H. H., and Botkin, D. B. (eds.),Forest Succession: Concepts and Application, Springer-Verlag, pp. 132-153.

  • Davis, M.: 1989, ‘Insights from Paleoecology on Global Change’,Bull. Ecol. Soc. Amer. 70, 222–228.

    Google Scholar 

  • Davis, M. B., Woods, K. D., Webb, S. L., and Futyma, R. P.: 1986, ‘Dispersal versus Climate: Expansion ofFagus andTsuga into the Upper Great Lakes Region’,Vegetatio 67, 93–103.

    Google Scholar 

  • Delcourt, H. and Delcourt, P.: 1988, ‘Quaternary Landscape Ecology: Relevant Scales in Space and Time’,Landscape Ecol. 2, 23–44.

    Google Scholar 

  • Doyle, T.: 1981, ‘The Role of Disturbance in the Gap Dynamics of a Montane Rain Forest: An Application of a Tropical Forest Succession Model’, in West, D. C., Shugart, H. H., and Botkin, D. B. (eds.),Forest Succession: Concepts and Application, Springer-Verlag, New York, pp. 56–73.

    Google Scholar 

  • Ek, A. R. and Monserud, R. A.: 1974, ‘Performance and Comparison of Stand Growth Models Based on Individual Tree and Diameter-Class Growth’,Canad. J. Forest Res. 9, 231–244.

    Google Scholar 

  • Emanuel, W. R., Shugart, H. H., and Stevenson, M. P.: 1985, ‘Climatic Change and the Broad Scale Distribution of Terrestrial Ecosystem Complexes’,Clim. Change 7, 29–43.

    Google Scholar 

  • Esser, G.: 1989, ‘Global Land Use Changes from 1860 to 1980 and Future Projections to 2500’,Ecol. Model. 44, 307–316.

    Google Scholar 

  • Ford, E. D. and Kiester, A. R.: 1990, ‘Simple Whole Tree: Introduction’,Acidic Deposition: State of Science and Technology, Washington, D.C.: The National Acid Precipitation Assessment Program; Report 17, pp. 17–39.

    Google Scholar 

  • Fosberg, M. A., Joyce, L. A., and Birdsey, R. A.: 1992, ‘Global Change and Forest Resources: Modeling Multiple Forest Resources and Human Interactions’, in Reilly, J. M. and Anderson, M. (eds.),Economic Issues in Global Climate Change, Westview Press, Boulder, pp. 235–251.

    Google Scholar 

  • Franklin, J. F., Swanson, F. J., Harmon, M. E., Perry, D. A., Spies, T. A., Dale, V. H., McKee, A., Ferrell, W. K., Means, J., Gregory, S. V., Lattin, J. D., Schowalter, T. D., and Larson, D.: 1991, ‘Effects of Global Climatic Change on Forests in Northwestern North America’,Northw. Environm. J. 7(2, 233–254.

    Google Scholar 

  • Friend, A. D., Shugart, H. H., and Running, S. W.: 1993, ‘A Physiology-Based Gap Model on Forest Dynamics’,Ecology 74, 792–797.

    Google Scholar 

  • Gardner, R. H., Turner, M. G., O'Neill, R. V., and Lavorel, S.: 1992, ‘Simulation of the Scale-Dependent Effects of Landscape Boundaries on Species Persistence and Dispersal’, in Holland, M. M., Riser, P. G., and Naiman, R. J. (eds.),The Role of Landscape Boundaries in the Management and Restoration of Changing Environments, Chapman and Hall, New York, pp. 76–89.

    Google Scholar 

  • Gardner, R. H., King, A. W., and Dale, V. H.: 1994, ‘Interactions between Forest Harvesting, Landscape Heterogeneity, and Species Persistence’, in Lemaster, D. C., and Sedjo, R.A. (eds.),Proceedings, Modeling Sustainable Forest Ecosystems (in press).

  • Geng, Q. Z.: 1988, ‘Modelisation Conjoite du Cycle de l'Eau et du Transfert des Nitrates dans un Systeme Hydrologique’, These de Doctorat, Ecole Nationale Superieure des Mines, Paris.

    Google Scholar 

  • Graham, R. L., Turner, M. G., and Dale, V. H.: 1990, ‘How Increasing Atmospheric CO2 and Climate Change Affect Forests’,BioScience 40, 575–587.

    Google Scholar 

  • Grainger, A.: 1990, ‘Modelling Deforestation in the Humid Tropics’, in Palo, M. and Mery, G. (eds.),Deforestation or Development in the Third World? Finnish Forest Research Institute, Helsinki, Bulletin No. 349, Vol.III: pp. 51–67.

    Google Scholar 

  • Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T., and Tosi, J. A.: 1971, ‘Forest Environments in Tropical Life Zones - A Pilot Study’, Pergamon, New York.

    Google Scholar 

  • Huff, D. D., Luxmoore, R. J., Mankin, J. B., and Begovich, C. L.: 1977, ‘TEHM: A Terrestrial Ecosystem Hydrology Model’, Environmental Sciences Division Publication No. 1019. EDFB/IBP-76/8, ORNL/NSF/EATC-27.

  • Hunsaker, C. T., Graham, R. L., Suter, G. J., O'Neill, R. V., Barnthouse, L. W., and Gardner, R. H.: 1990, ‘Assessing Ecological Risk on a Regional Scale’,Environm. Managem. 14, 325–32.

    Google Scholar 

  • Iverson, L. R., Brown, S., Prasad, A., Mitasova, H., Gillespie, A. J. R., and Lugo, A. E.: 1993, ‘Use of GIS for estimating Potential and Actual Forest Biomass for Continental South and Southeast Asia’, in Dale, V. H. (ed.),Effects of Land-Use Change on Atmospheric CO 2 Concentrations: South and Southeast Asia as a Case Study, Springer-Verlag, New York, pp. 67–116.

    Google Scholar 

  • Jenkinson, D. S., Adams, D. E., and Wild, A.: 1991, ‘Model Estimates of CO2 Emissions from Soil in Response to Global Warming’,Nature 351, 304–306.

    Google Scholar 

  • King, A. W.: 1991, ‘Translating Models across Scales in the Landscape’, in Turner, M. G. and Gardner, R. H. (eds.),Quantitative Methods in Landscape Ecology, Springer-Verlag, New York, pp. 479–518.

    Google Scholar 

  • Lashof, D. A.: 1987, ‘The Role of the Biosphere in the Global Carbon Cycle: Evaluating through Biospheric Modeling and Atmospheric Measurements’, Ph.D. Dissertation, Univ. Calif., Berkeley.

    Google Scholar 

  • Lee, R. G., Flamm, R. O., Turner, M. G., Bledsoe, C., Chandler, P., DeFerrari, C., Gottfried, R., Naiman, R. J., Schumaker, N., and Wear, D.: 1992, ‘Integrating Sustainable Development and Environmental Vitality’, Chapter 20 in Naiman, R. J. (ed.),New Perspectives in Watershed Management, Springer-Verlag, New York, pp. 499–521.

    Google Scholar 

  • Leslie, P. H.: 1945, ‘On the Use of Matrices in Certain Population Mathematics’,Biometrika 33, 183–212.

    Google Scholar 

  • Leslie, P. H.: 1948, ‘Some Further Notes on the Use of Matrices in Population Mathematics’,Biometrika 35, 213–245.

    Google Scholar 

  • Liu, S., Munson, R., Johnson, D., Gherini, S., Summers, K., Hudson, R., Wilkinson, K., and Pitelka, L.: 1991, ‘Application of a Nutrient Cycling Model (NuCM) to a Northern Mixed Hardwood and a Southern Coniferous Forest’,Tree Physiol. 9, 173–184.

    Google Scholar 

  • Luxmoore, R. J.: 1983, ‘Water Budget of an Eastern Deciduous Forest Stand’,Soil Sci. Soc. Am. J. 47, 785–791.

    Google Scholar 

  • Luxmoore, R. J.: 1991, ‘A Source-Sink Framework for Coupling Water, Carbon, and Nutrient Dynamics of Vegetation’,Tree Physiol. 9, 267–280.

    Google Scholar 

  • Luxmoore, R. J., King, A. W., and Tharp, M. L.: 1991, ‘Approaches to Scaling Up Physiologically Based Soil-Plant Models in Space and Time’,Tree Physiol. 9, 281–292.

    Google Scholar 

  • Malanson, G. P.: 1993, ‘Comment on Modeling Ecological Response to Climatic Change’,Clim. Change 23, 95–109.

    Google Scholar 

  • McMurtrie, R. E.: 1991, ‘Relationship of Forest Productivity to Nutrient and Carbon Supply - A Modeling Analysis’,Tree Physiol. 9, 87–99.

    Google Scholar 

  • Michaels, P. J. and Hayden, B. P.: 1987, ‘Modeling the Climate Dynamics of Tree Death’,BioScience 37(8, 603–610.

    Google Scholar 

  • Molina, J. A. E., Clapp, C. E., Shaffer, M. J., Chichester, F. W., and Larson, W. E.: 1983, ‘NISOIL: A Model of Nitrogen and Carbon Transformations in Soil: Description, Calibration and Behavior’,Soil Sci. Soc. Amer. J. 47, 85–99.

    Google Scholar 

  • Neilson, R. P.: 1993, ‘Biosphere Sources of CO2 during Climatic Change’,Water, Air, Soil Poll. (in press).

  • Ojima, D. S., Kittel, T. G. F., Rosswall, T., and Walker, B. H.: 1991, ‘Critical Issues for Understanding Global Change Effects on Terrestrial Ecosystems’,Ecol. Applic. 1, 316–325.

    Google Scholar 

  • Overpeck, J. T., Rind, D., and Goldberg, R.: 1990, ‘Climate Induced Changes in Forest Disturbance and Vegetation’,Nature 343, 51–53.

    Google Scholar 

  • Overpeck, J. T., Bartlein, P. J., and Webb, T.: 1991, ‘Potential Magnitude of Future Vegetation Change in Eastern North-America - Comparisons with the Past’,Science 254(5032, 692–695.

    Google Scholar 

  • Pacala, S. W. and Hurtt, G. C.: 1993, ‘Terrestrial Vegetation and Climate Change: Integrating Models and Experiments’, in Kareiva, P. M., Kingsolver, J. G., and Huey, R. B. (eds.),Biotic Interactions and Global Change, Sinauer Associates Inc., Sunderland, Mass., pp. 57–74.

    Google Scholar 

  • Pastor, J. and Post, W. M.: 1985, ‘Development of a Linked Forest Productivity-Soil Process Model’, U.S. Dept. Energy, ORNL/TM-9519.

  • Pastor, J. and Post, W. M.: 1988, ‘Response of Northern Forests to CO2 Induced Climate Change’,Nature 334, 55–58.

    Google Scholar 

  • Pennington, W.: 1986, ‘Lags in Adjustment of Vegetation to Climate Caused by the Pace of Soil Development: Evidence from Britain’,Vegetatio 67, 105–118.

    Google Scholar 

  • Prentice, I. C. and Fung, I. Y.: 1990, ‘Bioclimatic Simulations Test the Sensitivity of Terrestrial Carbon Storage to Perturbed Climates’,Nature 346Z, 48–51.

    Google Scholar 

  • Prentice, I. C., Webb, R. S., Ter-Mikhaelian, M. T., Solomon, A. M., Smith, T. M., Pitovranov, S. E., Nikolov, N. T., Minin, A. A., Leemans, R., Lavoral, S., Korzukhin, M. D., Hrabovszky, J. P., Helmisaari, H. O., Harrison, S. P., Emanuel, W. R., and Bonan, G. B.: 1989, ‘Developing a Global Vegetation Dynamics Model: Results of an IIASA Summer Workshop’, International Institute of Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Prentice, I. C., Bartlein, P. J., and Webb, T.: 1991, ‘Vegetation and Climate Change in Eastern North-America since the Last Glacial Maximum’,Ecology 72(6, 2038–2056.

    Google Scholar 

  • Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., Solomon, A. M.: 1992, ‘A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate’,J. Biogeogr. 19, 117–134.

    Google Scholar 

  • Protopapas, A. L. and Bras, R. L.: 1988, ‘State Space Dynamic Hydrological Modeling of Soil Crop Climate Interactions’,Water Resour. Res. 24(10, 1765–1779.

    Google Scholar 

  • Rastetter, E. B., Ryan, M. G., Shaver, G. R., Melillo, J. M., Nadelhoffer, K. J., Hobbie, J. E., Aber, J. D.: 1991, ‘A General Biogeochemical Model Describing the Responses of the C and N Deposition’,Tree Physiol. 9, 101–126.

    Google Scholar 

  • Rauscher, H. M., Isebrands, J. G., Host, G. E., Dickson, R. E., Dickmann, D. I., Crow, T. R., and Michael, D. A.: 1990, ‘ECOPHYS: An Ecophysiological Growth Process Model for Juvenile Poplar’,Tree Physiol. 7, 255–281.

    Google Scholar 

  • Rosenberg, N. J., McKenney, M. S., and Martin, P.: 1989, ‘Evapotranspiration in a Greenhouse Warmed World: A Review and a Simulation’,Agric. Forest Metero. 47(2-4, 303–320.

    Google Scholar 

  • Running, S. W.: 1984, ‘Documentation and Preliminary Validation of H2OTRANS and DAYTRANS, Two Models for Predicting Transpiration and Water Stress in Western Coniferous Forests’, USDA For. Serv. Res. Pap. RM-252.

  • Running, S. W. and Coughlan, J. C.: 1988, ‘A General Model of Forest Ecosystem Processes for Regional Applications. I. Hydrological Balance, Canopy Gas Exchange, and Primary Production Processes’,Ecol. Model. 42, 125–154.

    Google Scholar 

  • Running, S. W. and Gower, S. T.: 1991, ‘FOREST-BGC, A General Model of Forest Ecosystem Processes for Regional Applications. II. Dynamic Allocation and Nitrogen Budgets’,Tree Physiol. 9, 147–160.

    Google Scholar 

  • Running, S. W. and Nemani, R. R.: 1991, ‘Regional Hydrologic and Carbon Balance Responses of Forests Resulting from Potential Climate Change’,Clim. Change 19, 349–368.

    Google Scholar 

  • Running, S. W., Nemani, R. R., Peterson, D. L., Band, L. E., Potts, D. F., Pierce, L. L., and Spanner, M. A.: 1989, ‘Mapping Regional Forest Evapotranspiration and Photosynthesis by Coupling Satellite Data with Ecosystem Simulation’,Ecology 70, 1090–1101.

    Google Scholar 

  • Rutherford, P. M. and Juma, N. G.: 1992, ‘Performance of a Simulation Model Describing Protozoa-Induced Mineralization of Bacterial C and N in a Sandy Loam’,Can. J. Soil Sci. 72, 217–228.

    Google Scholar 

  • Ryan, M. G., Hunt, E. R. Jr., McMurtrie, R. E., Agren, G. I., Aber, J. D., Friend, A. D., Rastetter, E. B., Parton, W. J., Raison, R. J., and Linder, S.: 1994a, ‘Comparing Models of Ecosystem Function for Coniferous Forests. I. Model Description and Validation’, in Melillo, J. M., Agren, G. I., and Breymeyer, A. (eds.),Effects of Climate Change on Production and Decomposition in Coniferous Forests and Grasslands, Scope XX, John Wiley and Sons, London (in press).

    Google Scholar 

  • Ryan, M. G., McMurtrie, R. E., Agren, G. I., Hunt, E. R. Jr., Aber, J. D., Friend, A. D., Rastetter, E. B., and Parton, W. J.: 1994b, ‘Comparing Models of Ecosystem Function for Coniferous Forests. II. Predictions of Response to Changes in Atmospheric CO2 and Climate’, in Melillo, J. M., Agren, G. I., and Breymeyer, A. (eds.),Effects of Climate Change on Production and Decomposition in Coniferous Forests and Grasslands, Scope XX, John Wiley and Sons, London (in press).

    Google Scholar 

  • Schaefer, H., Bossel, H., Krieger, H., and Trost, N.: 1988, ‘Modelling the Responses of Mature Forest Trees to Air Pollution’,GeoJournal 17(2, 279–287.

    Google Scholar 

  • Schwartz, M. W.: 1992, ‘Modelling Effects of Habitat Fragmentation on the Ability of Trees to Respond to Climatic Warming’,Biodivers. Conserv. 2, 51–61.

    Google Scholar 

  • Schimel, D. S.: 1993, ‘Population and Community Processes in the Response of Terrestrial Ecosystems to Global Change’, in Kareiva, P. M., Kingsolver, J. G., and Huey, R. B. (eds.),Biotic Interactions and Global Change, Sinauer Associates Inc., Sunderland, Mass., pp. 45–56.

    Google Scholar 

  • Shugart, H. H.: 1984,A Theory of Forest Dynamics: The Ecological Implications of Forest Succession Models, Springer-Verlag, New York.

    Google Scholar 

  • Shugart, H. H. and Smith, T. M.: 1992, ‘Using Computer Models to Project Ecosystem Response, Habitat Change, and Wildlife Diversity’, in Peter, R. L. and Lovejoy, T. E. (eds.),Global Warming and Biological Diversity, Yale University Press, New Haven, pp. 147–157.

    Google Scholar 

  • Shugart, H. H. and West, D. C.: 1977, ‘Development of an Appalachian Deciduous Forest Succession Model and Its Application to the Impact of the Chestnut Blight’,J. Envir. Managem. 5, 161–179.

    Google Scholar 

  • Shugart, H. H., Smith, T. M., and Post, W. M.: 1992, ‘The Potential for Application of Individual-Based Simulation Models for Assessing the Effects of Global Change’,Annua Rev. Ecol. System. 23, 15–38.

    Google Scholar 

  • Smith, T. M., Leemans, R., and Shugart, H. H.: 1992, ‘Sensitivity of Terrestrial Carbon Storage to CO2-Induced Climate Change: Comparison of Four Scenarios Based on General Circulation Models’,Clim. Change 21, 347–366.

    Google Scholar 

  • Solomon, A. M.: 1986, ‘Transient Response of Forests to CO2-Induced Climate Change: Simulation Modeling Experiments in Eastern North America’,Oecologia 68, 567–579.

    Google Scholar 

  • Solomon, D. S.: 1981, ‘Individual Tree Growth of Red Spruce as Related to Tree Characteristics and Environmental Influences’, inXVII IUFRO World Congress, Kyoto, Japan, Japanese IUFRO Congress Council, Ibaraki, pp. 72–83.

    Google Scholar 

  • Southworth, F., Dale, V. H., and O'Neill, R. V.: 1991, ‘Contrasting Patterns of Land Use in Rondonia, Brazil: Simulating the Effects on Carbon Release’,Internat. Social Sci. J. 130, 681–698.

    Google Scholar 

  • Thiery, D.: 1983, ‘Description du Modele CREACHIM. BUREAU de Recherches Geologiques et Minieres, Orleans’, Note Tech. SGN/EAU 83/15.

  • Turner, M. G., Gardner, R. H., and O'Neill, R. V.: 1991, ‘Potential Responses of Landscape Boundaries to Global Climate Change’, in Holland, M. M., Risser, P. G., and Naiman, R. J. (eds.),Ecotones: The Role of Landscape Boundaries in the Management and Restoration of Changing Environments, Chapman & Hall, New York, pp. 52–75.

    Google Scholar 

  • Urban, D. L., Bonan, G. B., Smith, T. M., and Shugart, H. H.: 1991, ‘Spatial Applications of Gap Models’,Forest Ecol. Manage. 42, 95–110.

    Google Scholar 

  • Urban, D. L., Harmon, M. E., and Halpern, C. B.: 1993, ‘Potential Response of Pacific Northwestern Forests to Climatic Change: Effects of Stand Age and Initial Composition’,Clim. Change 23, 247–266.

    Google Scholar 

  • USDA (U.S. Department of Agriculture): 1984, ‘User's Guide for the CREAMS Computer Model’, Washington, D.C.: Soil Conservation Service, U.S. Department of Agriculture, Tech. Rep. 72.

  • Usher, M. B.: 1966, ‘A Matrix Approach to the Management of Renewable Resources with Special Reference to Trees’,J. Appl. Ecol. 3, 335–367.

    Google Scholar 

  • Van Veen, J. A., Ladd, J. N., and Frissel, M. J.: 1984, ‘Modelling C [carbon] and N [nitrogen] Turnover through the Microbial Biomass in Soil [Australia]’,Plant Soil 76(1/3, 257–274.

    Google Scholar 

  • Wang, Y. P. and Jarvis, P. G.: 1990, ‘Influence of Crown Structural Properties on PAR Absorption, Photosynthesis, and Transpiration in Sitka Spruce: Application of a Model (MAESTRO)’,Tree Physiol. 7, 297–316.

    Google Scholar 

  • Webb, T., III: 1987, ‘The Appearance and Disappearance of Major Vegetational Assemblages: Long-Term Vegetational Dynamics in Eastern North America’,Vegetatio 69, 177–187.

    Google Scholar 

  • Webb, W. L.: 1991, ‘Atmospheric CO2, Climate Change, and Tree Growth - A Process Model. 1. Model Structure’,Ecol. Model. 56, 81–107.

    Google Scholar 

  • Weck, J.: 1970, ‘an Improved CVP-Index for the Delimitation of the Potential Productivity Zones of Forest Lands of India’,Indian Forester 96, 565–572.

    Google Scholar 

  • Weinstein, D. A., Beloin, R. M., and Yanai, R. D.: 1991, ‘Modeling Changes in Red Spruce Carbon Balance and Allocation in Response to Interacting Ozone and Nutrient Stresses’,Tree Physiol. 9, 127–146.

    Google Scholar 

  • Whitehead, D. and Hinckley, T. M.: 1991, ‘Models of Water Flux through Forest Stands: Critical Leaf and Stand Parameters’,Tree Physiol. 9, 35–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The U.S. Government right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.

Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under contract DE-AC05-84OR21400.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dale, V.H., Rauscher, H.M. Assessing impacts of climate change on forests: The state of biological modeling. Climatic Change 28, 65–90 (1994). https://doi.org/10.1007/BF01094101

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01094101

Keywords

Navigation