Skip to main content
Log in

Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy

  • Regular Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The accuracy and precision of oxygen concentration and temperature measured by dual-broadband rotational Coherent Anti-Stokes Raman Spectroscopy (CARS) were investigated in nitrogen-oxygen mixtures at atmospheric pressure and temperatures between 290 and 1410 K. The relative standard deviation of temperatures evaluated from pure oxygen rotational CARS spectra was found to be around 5%, and the mean temperature was the same as for nitrogen CARS spectra, except for temperatures above 1000 K, where the temperature was 120 K below the correct value. The in situ calibrated oxygen concentrations were within 10% of the correct value, with a standard deviation of around 1.2% for the mixtures of 12 and 20% oxygen in nitrogen. For the lowest oxygen concentrations considered in this study (2 and 4%), the systematic errors in the evaluated concentrations were very large, and the standard deviation of repeated single-shot measurements was above 2%. However, employing weighting in the spectral fitting routine reduced the errors in the concentration and the single-shot standard deviation was lowered to 0.5%. Finally, it was shown that spectral interference (from oxygen) in a rotational CARS spectrum of nitrogen generally had little impact on the temperature evaluated from fitting the spectra to theoretical nitrogen spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Eckbreth:Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, MA 1987)

    Google Scholar 

  2. D.A. Greenhalgh: InAdvances in Non-Linear Spectroscopy, ed. by R.J.H. Clark, R.E. Hester (Wiley, New York 1988) p. 193

    Google Scholar 

  3. W. Stricker, W. Meier: InTrends in Applied Spectroscopy (Research Trends, Trivandrum, India 1993)

    Google Scholar 

  4. C. Löfström, S. Kröll, M. Aldén: InProc. 24th Symp. (Int'l) on Combustion (The Combustion Institute, Pittsburgh 1992) p. 1637

    Google Scholar 

  5. M. Lefebvre, M. Péalat, J. Strempel: Opt. Lett.9, 1806 (1992)

    Google Scholar 

  6. D. Brüggemann: Il Nuovo Cimento D14, 1075 (1992)

    Google Scholar 

  7. M.A. Yuratich: Mol. Phys.38, 625 (1979)

    Google Scholar 

  8. A.C. Eckbreth, T.J. Anderson: Appl. Opt.24, 2731 (1985)

    Google Scholar 

  9. A.C. Eckbreth, T.J. Anderson: Opt. Lett.11, 496 (1986)

    Google Scholar 

  10. M. Aldén, P.-E. Bengtsson, H. Edner: Appl. Opt.25, 4493 (1986)

    Google Scholar 

  11. P.-E. Bengtsson, L. Martinsson, M. Aldén, S. Kröll: Combust. Sci. Technol.81, 129 (1992)

    Google Scholar 

  12. L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll: Temp.6, 679 (1992)

    Google Scholar 

  13. L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, J. Bonamy: J. Chem. Phys.99, 2466 (1993)

    Google Scholar 

  14. S. Kröll, P.-E. Bengtsson, M. Aldén, D. Nilsson: Appl. Phys. B51, 25 (1990)

    Google Scholar 

  15. M. Woyde, W. Stricker: Appl. Phys. B50, 519 (1990)

    Google Scholar 

  16. M. Péalat, M. Lefebvre, J.-P. Taran, P.L. Kelley: Phys. Rev. A38, 1948 (1988)

    Google Scholar 

  17. R. Lucht: Opt. Lett.12, 78 (1987)

    Google Scholar 

  18. R.R. Antcliff, O. Jorett, Jr.: Rev. Sci. Instrum.58, 2075 (1987)

    Google Scholar 

  19. I.R. Beattie, T.R. Gilson, D.A. Greenhalgh: Nature276, 378 (1978)

    Google Scholar 

  20. C.M. Roland, W.A. Steele: J. Chem. Phys.73, 5919 (1980)

    Google Scholar 

  21. L.P. Goss, J.W. Fleming, A.B. Harvey: Opt. Lett.5, 345 (1980)

    Google Scholar 

  22. J.A. Shirley, R.J. Hall, J.F. Verdieck, A.C. Eckbreth: AIAA-Paper No. 80-1542 (1980)

  23. J.B. Zheng, A. Leipertz, J.B. Snow, R.K. Chang: Opt. Lett.8, 350 (1983)

    Google Scholar 

  24. D.V. Murphy, R.K. Chang: Opt. Lett.6, 233 (1981)

    Google Scholar 

  25. J.W. Fleming, A.B. Harvey, W.T. Barnes: Temp.5, 589 (1982)

    Google Scholar 

  26. J.B. Zheng, J.B. Snow, D.V. Murphy, A. Leipertz, R.K. Chang, R.L. Farrow: Opt. Lett.9, 341 (1984)

    Google Scholar 

  27. B. Dick, A. Gierulski: Appl. Phys. B40, 1 (1986)

    Google Scholar 

  28. A. Leipertz, T. Seeger, H. Spiegel, E. Magens: Temp.6, 661 (1992)

    Google Scholar 

  29. A. Leipertz, E. Magens, T. Seeger, H. Spiegel: InAerothermodynamics in Combustors, ed. by R.S.L. Lee, J.H. Whitelaw, T.S. Wung (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  30. Th. Lasser, E. Magens, A. Leipertz: Opt. Lett.10, 535 (1985)

    Google Scholar 

  31. A. Leipertz, E. Magens: AIAA-Paper 85-1569 (1985)

  32. J.D. Black, C.A. Long: Appl. Opt.31, 4291 (1992)

    Google Scholar 

  33. P.-E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, G. Lundholm: InProc. 25th Symp. (Int'l) on Combustion (The Combustion Institute, Pittsburgh, PA 1994) p. 1735

    Google Scholar 

  34. S. Kröll, M. Aldén, P.-E. Bengtsson, C. Löfström: Appl. Phys. B49, 445 (1989)

    Google Scholar 

  35. C. Asawaroengchai, G.M. Rosenblatt: J. Chem. Phys.72, 2664 (1980)

    Google Scholar 

  36. T.C. James, W. Klemperer: J. Chem. Phys.31, 130 (1959)

    Google Scholar 

  37. M.C. Drake, C. Asawaroengchai, G.M. Rosenblatt: Am. Chem. Soc. Symp. Ser.134, 231 (1980)

    Google Scholar 

  38. M.C. Drake: Opt. Lett.7, 440 (1982)

    Google Scholar 

  39. F.Y. Yueh, E.J. Beiting: Comput. Phys. Commun.42, 65 (1986)

    Google Scholar 

  40. J.C. Luthe, E.J. Beiting, F.Y. Yueh: Comput. Phys. Commun.42, 73 (1986)

    Google Scholar 

  41. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling:Numerical Recipes (FORTRAN Version). (Cambridge Univ. Press, Cambridge 1989)

    Google Scholar 

  42. D.W. Marquardt: J. Soc. Ind. Appl. Math.11, 431 (1963)

    Google Scholar 

  43. K.W. Brown, N.H. Rich, J.W. Nibler: J. Mol. Spectrosc.151, 482 (1992)

    Google Scholar 

  44. G. Rouillé, G. Millot, R. Saint-Loup, H. Berger: J. Mol. Spectrosc.154, 372 (1992)

    Google Scholar 

  45. T. Dreier, B. Lange, J. Wolfrum, M. Zahn: Appl. Phys. B45, 183 (1988)

    Google Scholar 

  46. T. Dreier, G. Schiff: Appl. Phys. B55, 388 (1992)

    Google Scholar 

  47. M. Bérard, P. Lallemand, J.P. Cebe, M. Giraud: J. Chem. Phys.78, 672 (1983)

    Google Scholar 

  48. K. Altmann, G. Strey, J.G. Hochenbleicher, J. Brandmüller: Z. Naturforsch.27a, 56 (1972)

    Google Scholar 

  49. G.J. Rosasco, W.S. Hurst: Phys. Rev. A32, 281 (1985)

    Google Scholar 

  50. K.P. Huber, G. Herzberg:Constants of Diatomic Molecules (Van Nostrand-Reinhold, New York 1979)

    Google Scholar 

  51. R.R. Laher, F.R. Gilmore: J. Phys. Chem. Ref. Data20, 685 (1991)

    Google Scholar 

  52. A.E. De Pristo, S.D. Augustin, R. Ramaswamy, H. Rabitz: J. Chem. Phys.71, 850 (1979)

    Google Scholar 

  53. G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy: J. Chem. Phys.96, 961 (1992)

    Google Scholar 

  54. D. Robert, J. Bonamy: J. Phys. (Paris)40, 923 (1979)

    Google Scholar 

  55. J. Bonamy: Université de Franche-Comte, France, private communication

  56. J.P. Looney, G.J. Rosasco: J. Chem. Phys.95, 2379 (1991)

    Google Scholar 

  57. M. Aldén, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson: Appl. Opt.28, 3206 (1989);29, 4434 E (1990)

    Google Scholar 

  58. S. Kröll, D. Sandell: J. Opt. Soc. Am. B5, 1910 (1988)

    Google Scholar 

  59. B. Attal-Trétout, P. Bouchardy, P. Magre, M. Péalat, J.-P. Taran: Appl. Phys. B51, 17 (1990)

    Google Scholar 

  60. M. Péalat, P. Magre, P. Bouchardy, G. Collin: Appl. Opt.30, 1263 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinsson, L., Bengtsson, P.E. & Aldén, M. Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy. Appl. Phys. B 62, 29–37 (1996). https://doi.org/10.1007/BF01081244

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081244

PACS

Navigation