Skip to main content
Log in

Monte Carlo study of the effect of perturbations on critical droplets

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a Monte Carlo study of the effect of perturbations on critical or nucleation droplets in both classical and spinodal nucleation. Locating the saddle point with an intervention technique, we determine that the effect of perturbations at the saddle point depends on their location in the droplet. We find that the most effective perturbations occur at the location of the maximum growth rate where the droplet is allowed to nucleate and grow unperturbed. Moreover, the decay of sufficiently perturbed droplets follows a path that can be best characterized as a growth mode in reverse, specifically the decay of classical droplets is at the surface and that of spinodal droplets at the center independent of the location of the perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1983).

    Google Scholar 

  2. J. W. Cahn and J. E. Hilliard,J. Chem. Phys. 28:256 (1958).

    Google Scholar 

  3. J. S. Langer,Ann. Phys. 41:108 (1967).

    Google Scholar 

  4. W. Klein and C. Unger,Phys. Rev. B 28:445 (1983).

    Google Scholar 

  5. C. Unger and W. Klein,Phys. Rev. B 29:2698 (1984).

    Google Scholar 

  6. K. Binder,Phys. Rev. A 29:341 (1984).

    Google Scholar 

  7. D. Stauffer, A. Coniglio, and D. W. Heermann,Phys. Rev. Lett. 49:1299 (1982).

    Google Scholar 

  8. D. W. Heermann and W. Klein,Phys. Rev. Lett. 50:1062 (1983).

    Google Scholar 

  9. L. Monette, W. Klein, M. J. Zuckermana, A. Khadir, and R. Harris,Phys. Rev. B 38:11607 (1988).

    Google Scholar 

  10. C. Unger and W. Klein,Phys. Rev. B 31:6127 (1985).

    Google Scholar 

  11. J. L. Lebowitz and O. Penrose,J. Math. Phys. 7:98 (1966).

    Google Scholar 

  12. D. W. Heermann, W. Klein, and D. Stauffer,Phys. Rev. Lett. 49:1261 (1982).

    Google Scholar 

  13. A. Coniglio and W. Klein,J. Phys. A 13:2775 (1980).

    Google Scholar 

  14. W. Klein, inComputer Simulations in Condensed Matter Physics 3, D. P. Landau, K. K. Mon, and H. B. Schütter, eds. (Springer-Verlag, Heidelberg, 1991).

    Google Scholar 

  15. T. S. Ray and W. Klein,J. Stal. Phys. 31:891 (1990).

    Google Scholar 

  16. M. Creutz,Phys. Rev. Lett. 50:1411 (1983).

    Google Scholar 

  17. D. W. Heermann, A. Coniglio, W. Klein, and D. Stauffer,J. Stat. Phys. 36:447 (1984).

    Google Scholar 

  18. L. Monette, Ph.D. thesis, Boston University, Boston, Massachusetts (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monette, L., Klein, W. & Zuckermann, M. Monte Carlo study of the effect of perturbations on critical droplets. J Stat Phys 66, 117–132 (1992). https://doi.org/10.1007/BF01060062

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060062

Key words

Navigation