Skip to main content
Log in

Category of topological jet manifolds and certain applications in the theory of nonlinear infinite-dimensional dynamical systems

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

A new category of topological jet manifolds is proposed for the purpose of investigating exact finite-dimensional approximations of nonlinear dynamical systems on infinite-dimensional functional manifolds. Differential geometry structures on these manifolds and their applications to the theory of integrability in quadratures of nonlinear dynamical Lax-type systems are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Novikov (ed.), Theory of Solitons [in Russian], Nauka, Moscow (1980), 342 pp.

    Google Scholar 

  2. L. A. Takhtadzhyan and L. D. Fadeev, Hamiltonian Approach to Theory of Solitons [in Russian], Nauka, Moscow (1986), 527 pp.

    Google Scholar 

  3. Yu. A. Mitropol'skii [Mytropol's'kyy], N. N. Bogolyubov, Jr., A. K. Prikarpatskii [Prykarpats'kii], and V. G. Samoilenko, Integrable Dynamical Systems [in Russian], Nauk. Dumka, Kiev (1987), 296 pp.

    Google Scholar 

  4. V. I. Arnol'd, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1979), 431 pp.

    Google Scholar 

  5. V. G. Samoilenko, Jet Analysis on Smooth Infinite-Dimensional Manifolds and Its Application to Investigations of the Integrability of Nonlinear Dynamical Systems [in Russian], Preprint No. 88.51, Institute of Mathematics of the Academy of Sciences of Ukrainian SSR, Kiev (1988), 23 pp.

    Google Scholar 

  6. V. I. Arnol'd, A. N. Varchenko, and S. M. Gusein-Zade, Singularities of Differentiable Manifolds [in Russian], Nauka, Moscow (1982), 340 pp.

    Google Scholar 

  7. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1984), 710 pp.

    Google Scholar 

  8. M. M. Pritula, A. K. Prykarpats'kii, and I. V. Mykytyuk, Elements of the Theory of Differential Geometry Structures and Dynamical Systems [in Ukrainian], UMKVO, Kiev (1988), 87 pp.

    Google Scholar 

  9. P. Oevel, Applications of Lie Groups to Differential Equations [Russian translation], Mir, Moscow (1990), 536 pp.

    Google Scholar 

  10. A. M. Vinogradov, I. S. Krasil'shchik, and V. V. Lychagin, Introduction to the Geometry of Nonlinear Differential Equations [in Russian], Nauka, Moscow (1986), 335 pp.

    Google Scholar 

  11. M. Gromov, Partial Differential Relations [Russian translation], Mir, Moscow (1990), 536 pp.

    Google Scholar 

  12. Yu. O. Mytropol's'kyy, A. K. Prykarpats'kyy, and B. M. Fil', “Certain aspects of the gradient-holonomy algorithm to the theory of integrability of nonlinear dynamical systems and problems of computer algebra,” Ukr. Mat. Zh.,43, No. 1, 78–91 (1991).

    Google Scholar 

  13. A. K. Prikarpatskii and I. V. Mikiyuk [Mykytyuk], Algebraic Aspects of Integrability of Nonlinear Dynamical Systems on Manifolds [in Russian], Nauk. Dumka, Kiev (1991), 267 pp.

    Google Scholar 

  14. A. Yu. Khrennikov, “Functional superanalysis,” Usp. Mat. Nauk,43, No. 2, 87–114 (1988).

    Google Scholar 

  15. D. Kastler, “The Koszul formula for graded Lie-Cartan pairs (super BBS operator),” J. Geom. and Phys.,4, No. 4, 523–534 (1987).

    Google Scholar 

  16. A. Jadezyk and D. Kastler, “Graded Lie-Cartan pairs. II. The fermionic differential calculus,” Ann. Phys.,179, No. 2, 169–200 (1987).

    Google Scholar 

  17. R. Trostel, “Color analysis, theory ofΓ-graded integrable evolution equations, and super-Nijenhuis operators,” J. Math. Phys.,26, No. 12, 3160–3171 (1985).

    Google Scholar 

  18. Yu. I. Manin and A. O. Radul, “A supersymmetric extension of the Kadomtsev-Petviashwili hierarchy,” Communs. Math. Phys.,98, No. 1, 65–77 (1985).

    Google Scholar 

  19. K. Gawedzki, “Supersymmetric extension of the Korteweg-de Vries equation,” Ann. Inst. H. Poincaré. A,27, No. 4, 335–366 (1977).

    Google Scholar 

  20. P. Mathieu, “Supersymmetric extension of the Korteweg-de Vries equation,” J. Math. Phys.,29, No. 11, 2499–2506 (1988).

    Google Scholar 

  21. P. P. Kulish, “Analog of Korteweg-de Vries equation for a superconformal algebra,” Differents. Geom., Gruppy Li i Mekhanika,101, 64–68 (1987).

    Google Scholar 

  22. W. Oevel, “R-structures, Yang-Baxter equations, and related involution theorems,” J. Math. Phys.,30, No. 5, 1140–1149 (1989).

    Google Scholar 

  23. B. N. Fil', Supergeneralization of Fully Integrable Dynamical Systems [in Russian], Preprint No. 89.28, Institute of Mathematics of the Academy of Sciences of Ukrainian SSR, Kiev (1989), 29 pp.

    Google Scholar 

  24. R. A. Chowdhury. and S. Roy, “On the Bäcklund transformation and Hamiltonian properties of superevaluation equations,” J. Math. Phys.,27, No. 10, 2464–2468 (1986).

    Google Scholar 

  25. L. Yi-Shen and L.-N. Zhang, “Super AKNS-scheme and its finite conserved currents,” Nuovo cim. A,93, No. 2, 175–183 (1986).

    Google Scholar 

  26. M. Gurses and O. Oguz, “A super AKNS-scheme,” Phys. Lett. A,108, No. 9, 437–440 (1985).

    Google Scholar 

  27. B. A. Kupershmidt, “Integrable systems,” Proc. Nat. Acad. Sci. USA, No. 81, 6562–6563 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrayins'kyy Matematychnyy Zhurnal, Vol. 44, No. 9, pp. 1242–1256, September, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prykarpats'kyy, A.K., Fil', B.M. Category of topological jet manifolds and certain applications in the theory of nonlinear infinite-dimensional dynamical systems. Ukr Math J 44, 1136–1148 (1992). https://doi.org/10.1007/BF01058376

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01058376

Keywords

Navigation