Skip to main content
Log in

Microscopic-based fluid flow invasion simulations

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A microscopic method for the generation of invasion percolation structures using “armies” of interacting random walkers is presented. Two distinct species are used to simulate the invading and defending fluids of a fluid invasion process. Trapping of the defending species is accomplished purely by local rules, without the need to repetitively check the connection between the “to be displaced” defender phase and the sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. M. Marle,Multiphase Flow in Porous Media (Gulf, Houston, Texas, 1981).

    Google Scholar 

  2. D. Stauffer,Phys. Rep. 54:1 (1979).

    Google Scholar 

  3. M. M. Dias and D. Wilkinson,J. Phys. A 19:3131 (1986).

    Google Scholar 

  4. Li Yu, W. G. Laidlaw, and N. C. Wardlaw,Adv. Colloid Interface Sci. 26:1 (1986).

    Google Scholar 

  5. G. R. Jerauld and S. J. Salter,Transport Porous Media 5:103 (1990).

    Google Scholar 

  6. R. Maier and W. G. Laidlaw,Math. Geol. 23:87–110 (1991);Transport Porous Media 5, 421–428 (1990).

    Google Scholar 

  7. J. Koplik and T. J. Lasseter, Society of Petroleum Engineers, Paper 11014 (1982).

  8. R. Lenormand and C. Zarcone,Phys. Rev. Lett. 54:2226 (1985).

    Google Scholar 

  9. R. Lenormand, E. Touboul, and C. Zarcone,J. Fluid Mech. 189:165 (1988).

    Google Scholar 

  10. S. Kirkpatrick,Rev. Mod. Phys. 45:574 (1973).

    Google Scholar 

  11. P. G. Saffman and G. Taylor,Proc. R. Soc. A 245:312 (1958).

    Google Scholar 

  12. L. Patterson,Phys. Rev. Lett. 52:1621 (1984).

    Google Scholar 

  13. M. J. King and H. Scher, Society of Petroleum Engineers, Paper 14366 (1985).

  14. L. P. Kadanoff,J. Stat. Phys. 39:267 (1985).

    Google Scholar 

  15. J. Hoshen, and R. Kopelman,J. Chem. Phys. 65:2817 (1976).

    Google Scholar 

  16. R. Kutner and K. W. Kehr,Phil. Mag. 48A:199 (1983).

    Google Scholar 

  17. T. A. Witten and L. M. Sander,Phys. Rev. Lett. 47:1400 (1981).

    Google Scholar 

  18. T. A. Witten and L. M. Sander,Phys. Rev. B 27:5686 (1983).

    Google Scholar 

  19. S. Tolman and P. Meakin,Physica A 158:801 (1989).

    Google Scholar 

  20. J. D. Sherwood and J. Nittman,J. Phys. (Paris)47:15 (1986).

    Google Scholar 

  21. J. D. Sherwood,J. Comp. Phys. 68:485 (1987).

    Google Scholar 

  22. L. Niemeyer, L. Pietrono, and H. J. Weismann,Phys. Rev. Lett. 52:1033 (1984).

    Google Scholar 

  23. M. Matsushita, K. Honda, H. Toyoki, Y. Hayakawa, and H. Kondo,J. Phys. Soc. Japan 55:2618 (1986).

    Google Scholar 

  24. D. Rothman,J. Geophys. Res. 95:8663 (1990).

    Google Scholar 

  25. R. Kopelman,Science 241:1620 (1988).

    Google Scholar 

  26. J. Hoshen and R. Kopelman,J. Chem. Phys. 65:2817 (1976).

    Google Scholar 

  27. W. G. Wilson and W. G. Laidlaw, to be published.

  28. H. E. Stanley, inOn Growth and Form, H. E. Stanley and N. Ostrowsky, eds. (1986), pp. 21–53.

  29. G. R. Hamilton, W. G. Laidlaw, R. Maier, and R. B. Flewwelling,J. Math. Chem. 5:249 (1990).

    Google Scholar 

  30. R. Orbach,Science 231:773 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Stauffer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, W.G., Laidlaw, W.G. Microscopic-based fluid flow invasion simulations. J Stat Phys 66, 1165–1176 (1992). https://doi.org/10.1007/BF01055724

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01055724

Key words

Navigation