Skip to main content
Log in

Diffusion and reaction among traps: some theoretical and simulation results

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Diffusion and reaction in heterogeneous media arise in a host of phenomena in the physical and biological sciences. The determination of the mean survival timeτ (i.e., inverse trapping rate) and relaxation timesT n, n=1,2,3,... (i.e., inverse eigenvalues), associated with diffusion among partially absorbing, static traps with surface rate constantk are problems of long-standing interest. The limitsk=∞ andk=0 correspond to the diffusion-controlled case (i.e., perfect absorbers) and reaction-controlled case (i.e., perfect reflectors), respectively. This paper reviews progress we have made on several basic aspects of this problem: (i) the formulation of rigorous bonding techniques and computational methodologies that enable one to estimate the mean survival time τ and principal relaxation timeT 1 (ii) the quantitative characterization of the microstructure of nontrivial continuum (i.e., off-lattice) models of heterogeneous media; and (iii) evaluation of τ and T1 for the same models. We also describe a rigorous link between the mean survival time t and a different effective parameter of the system, namely the fluid permeability tensork associated with Stokes flow through the same porous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. F. Calef and J. M. Deutch,Annu. Rev. Chem. Phys. 34:493 (1983).

    Google Scholar 

  2. H. C. Berg,Random Walks in Biology (Princeton University Press, Princeton, New Jersey, 1983).

    Google Scholar 

  3. G. H. Weiss,J. Stat. Phys. 42:3 (1986).

    Google Scholar 

  4. M. von Smoluchkowski,Phys. Z. 17:557 (1916).

    Google Scholar 

  5. S. Prager,Chem. Eng. Sci. 18:227 (1963).

    Google Scholar 

  6. B. U. Felderhof and J. M. Deutch,J. Chem. Phys. 64:4551 (1976).

    Google Scholar 

  7. R. I. Cukier and K. F. Freed,J. Chem. Phys. 78:2573 (1983).

    Google Scholar 

  8. P. M. Richards,J. Chem. Phys. 85:3520 (1986).

    Google Scholar 

  9. P. M. Richards,Phys. Rev. B 35:248 (1987).

    Google Scholar 

  10. J. Rubinstein and S. Torquato,J. Chem. Phys. 88:6372 (1988).

    Google Scholar 

  11. A. Szabo, R. Zwanzig, and N. Agmon,Phys. Rev. Lett. 61:2496 (1988).

    Google Scholar 

  12. S. Torquato and J. Rubinstein,J. Chem. Phys. 90:1644 (1989).

    Google Scholar 

  13. A. Szabo,J. Phys. Chem. 93:6929 (1989).

    Google Scholar 

  14. J. R. Banavar and L. M. Schwartz,Phys. Rev. Lett. 58:1411 (1987).

    Google Scholar 

  15. S. Torquato,Phys. Rev. Lett. 64:2644 (1990).

    Google Scholar 

  16. S. Torquato and M. Avellaneda,J. Chem. Phys. 95:6477 (1991).

    Google Scholar 

  17. S. Prager,Physica 29:129 (1963).

    Google Scholar 

  18. M. Doi,J. Phys. Soc. Japan 40:56 (1976).

    Google Scholar 

  19. S. Torquato, B. Lu, and J. Rubinstein,Phys. Rev. A 41:2059 (1990).

    Google Scholar 

  20. R. Courant and D. Hilbert,Methods of Mathematical Physics, Vol. I (Wiley-Interscience, New York, 1953).

    Google Scholar 

  21. A. E. Scheidegger,The Physics of Flow through Porous Media (University of Toronto Press, Toronto, 1974).

    Google Scholar 

  22. D. J. Wilkinson, D. L. Johnson, and L. M. Schwartz,Phys. Rev. B, in press.

  23. D. L. Johnson, J. Koplik, and R. Dashen,J. Fluid Mech. 176:379 (1987).

    Google Scholar 

  24. P. Sheng and M. Y. Zhou,Phys. Rev. Lett. 61:159 (1988).

    Google Scholar 

  25. G. W. Milton,Phys. Rev. Lett. 46:542 (1981).

    Google Scholar 

  26. S. Torquato,J. Chem. Phys. 84:6345 (1986).

    Google Scholar 

  27. J. Rubinstein and S. Torquato,J. Fluid Mech. 206:25 (1989).

    Google Scholar 

  28. S. Torquato,J. Stat. Phys. 45:843 (1986).

    Google Scholar 

  29. J. P. Hansen and I. R. McDonald,Simple Theory of Liquids (Academic Press, New York, 1986).

    Google Scholar 

  30. S. Torquato and G. Stell,J. Chem. Phys. 77:2071 (1982).

    Google Scholar 

  31. H. Reiss, H. L. Frisch, and J. L. Lebowitz,J. Chem. Phys. 31:369 (1959).

    Google Scholar 

  32. S. Torquato,J. Chem. Phys. 81:5079 (1984).

    Google Scholar 

  33. S. W. Haan and R. Zwanzig,J. Phys. A 10:1547 (1977), and references therein.

    Google Scholar 

  34. W. T. Elam, A. R. Kerstein, and J. J. Rehr,Phys. Rev. Lett. 52:1516 (1984).

    Google Scholar 

  35. S. Torquato and G. Stell,J. Chem. Phys. 82:980 (1985).

    Google Scholar 

  36. S. Torquato and F. Lado,J. Phys. A: Math. Gen. 18:141 (1985).

    Google Scholar 

  37. G. Stell and P. A. Rikvold,Chem. Eng. Commun. 51:233 (1987).

    Google Scholar 

  38. S. Torquato,J. Chem. Phys. 85:4622 (1986).

    Google Scholar 

  39. S. Torquato and S. B. Lee,Physica A 164:347 (1990).

    Google Scholar 

  40. B. Lu and S. Torquato,Phys. Rev. A 43:2078 (1991).

    Google Scholar 

  41. S. Torquato and A. K. Sen,J. Appl. Phys. 67:1145 (1990).

    Google Scholar 

  42. F. Lado and S. Torquato,J. Chem. Phys. 93:5912 (1990).

    Google Scholar 

  43. S. Torquato and F. Lado,J. Chem. Phys. 94:4453 (1991).

    Google Scholar 

  44. J. L. Lebowitz and J. W. Perram,Mol. Phys. 50:1207 (1983).

    Google Scholar 

  45. S. B. Lee, I. C. Kim, C. A. Miller, and S. Torquato,Phys. Rev. B 39:11833 (1989).

    Google Scholar 

  46. C. A. Miller and S. Torquato,Phys. Rev. B 39:710 (1989).

    Google Scholar 

  47. L. H. Zheng and Y. C. Chiew,J. Chem. Phys. 90:322 (1989).

    Google Scholar 

  48. S. Torquato and I. C. Kim,Appl. Phys. Lett. 55:1847 (1989).

    Google Scholar 

  49. C. A. Miller, I. C. Kim, and S. Torquato,J. Chem. Phys. 94 (1991).

  50. S. B. Lee and S. Torquato,J. Chem. Phys. 89:3258 (1988).

    Google Scholar 

  51. I. C. Kim and S. Torquato,Phys. Rev. A 43:3198 (1991).

    Google Scholar 

  52. S. Torquato,J. Chem. Phys. 85:7178 (1986).

    Google Scholar 

  53. P. M. Richards and S. Torquato,J. Chem. Phys. 87:4612 (1987).

    Google Scholar 

  54. I. M. Lifshitz, S. A. Gredeskal, and L. A. Pastur,Introduction to the Theory of Disordered Systems (Wiley, New York, 1988).

    Google Scholar 

  55. M. D. Donsker and S. R. S. Varadhan,Commun. Pure Appl. Math. 28:525 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torquato, S. Diffusion and reaction among traps: some theoretical and simulation results. J Stat Phys 65, 1173–1206 (1991). https://doi.org/10.1007/BF01049606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049606

Key words

Navigation