Skip to main content
Log in

Remarks on scaling a model of Witten-Sander type

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We try to prove rigorously that the perimeter of the large Witten-Sander cluster does not scale as the square root of its area, by making a forced comparison with the ill-posed Hele-Shaw problem of fluid dynamics. The attempt is not completely successful; nevertheless some interesting consequences of the comparison are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bensimonet al., Viscous flows in two dimensions,Rev. Mod. Phys. 58:977–990 (1986).

    Google Scholar 

  2. C. Caratheodory,Conformal Representation, 2nd ed. (Cambridge University Press, Cambridge, 1958).

    Google Scholar 

  3. A. De Masi, P. A. Ferrari, and J. L. Lebowitz, Reaction-diffusion equations for interacting particle systems,J. Stat. Phys. 44:589–644 (1986).

    Google Scholar 

  4. A. De Masi, P. A. Ferrari, and M. E. Vares, A microscopic model of interface related to the Burger's equation,J. Stat. Phys. 55:601–611 (1989).

    Google Scholar 

  5. E. Di Benedetto and A. Friedman, The ill-posed Hele-Shaw model and the Stefan problem for supercooled water,Trans. Am. Math. Soc. 282:183–204 (1984).

    Google Scholar 

  6. J. L. Doob,Classical Potential Theory and its Probabilistic Counterpart (Springer-Verlag, New York, 1984).

    Google Scholar 

  7. A. Friedman,Variational Problems and Free Boundary Problems (Wiley, New York, 1982).

    Google Scholar 

  8. A. Joffe and M. Metivier, Weak convergence of sequences of semimartingales with applications to multiple branching processes,Adv. Appl. Prob. 18:20–65 (1986).

    Google Scholar 

  9. L. Kadanoff, Simulating hydrodynamics: A pedestrian model,J. Stat. Phys. 39:267–283 (1985).

    Google Scholar 

  10. O. D. Kellogg,Foundations of Potential Theory (Verlag von J. Springer, Berlin, 1929).

    Google Scholar 

  11. H. Kesten, How long are the arms in DLA?,J. Phys. A: Math. Gen. 20:L29-L33 (1987).

    Google Scholar 

  12. H. Kesten, Hitting probabilities of random walks on d,Stock. Proc. Appl. 25:165–184 (1987).

    Google Scholar 

  13. H. Kesten, Some caricatures of multiple contact diffusion limited aggregation and theη-model, inProceedings of Durham Symposium on Stochastic Analysis, to appear.

  14. C. Kipnis, S. Olla, and S. R. S. Varadhan, Hydrodynamics and large deviation for simple exclusion processes,Commun. Pure Appl. Math. 42:115–137 (1989).

    Google Scholar 

  15. S. Liang, Random walk simulations of flow in Hele-Shaw cells,Phys. Rev. A 33:2663–2674 (1986).

    Google Scholar 

  16. I. Mitoma, Tightness of probabilities onC([0, 1], ℒ′) andD([0, 1], ℒ′), Ann. Prob. 11:989–999 (1983).

    Google Scholar 

  17. C. Pommerenke,Univalent Functions (Vanderhoeck and Ruprecht, 1976).

  18. L. Paterson, Diffusion limited aggregation and two fluid displacement in porous media,Phys. Rev. Lett. 53:1621–1624 (1984).

    Google Scholar 

  19. M. Plischke, Z. Rácz, and D. Liu, Time reversal invariance and universality of two dimensional growth models,Phys. Rev. B 35:3485–3495 (1987).

    Google Scholar 

  20. F. Spitzer,Principles of Random Walk (Van Nostrand, New York).

  21. H. E. Stanley and N. Ostrowsky,On Growth and Form: Fractal and Non-fractal Patterns in Physics (M. Nijhoff, Boston, 1986).

    Google Scholar 

  22. H. E. Stanley and N. Ostrowsky,Nato Advanced Study Institute on Random Fluctuations and Pattern Growth: Experiments and Models (Kluwer Academic Publishers, Boston, 1988).

    Google Scholar 

  23. E. M. Stein,Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, New Jersey, 1970).

    Google Scholar 

  24. D., Stroock and S. R. S. Varadhan,Multidimensional Diffusion Processes (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  25. J. Szep, J. Cserti, and J. Kertész, Monte-Carlo approach to dendritic growth,J. Phys. A 18:L413–4l8 (1985).

    Google Scholar 

  26. T. Viczek,Fractal Growth Phenomena (World Scientific, Singapore, 1989).

    Google Scholar 

  27. T. A. Witten and L. M. Sander, Diffusion limited aggregation, a kinetic critical phenomenon,Phys. Rev. Lett. 47:1400–1403 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

March, P. Remarks on scaling a model of Witten-Sander type. J Stat Phys 67, 1117–1149 (1992). https://doi.org/10.1007/BF01049012

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049012

Key words

Navigation