Skip to main content
Log in

How do ovarian follicles interact? A many-body problem with unusual symmetry and symmetry-breaking properties

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The assumption that hormonal feedback regulates ovarian follicle growth is used to formulate a many-body problem in which interactions are spatially independent. This mechanism of interaction is shown to be sufficient to account for the regulation of ovulation number. A method is also developed to test if this assumption is consistent with the observed spatial distribution of follicles in the Rhesus monkey ovary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Lipschütz, New developments in ovarian dynamics and the law of foilicular constancy,Br. J. Exp. Biol. 5:283–292 (1928).

    Google Scholar 

  2. R. E. Jones, Control of foilicular selection, inThe Vertebrate Ovary, R. E. Jones, ed. (Plenum Press, New York, 1978), Chapter 22, pp. 763–786.

    Google Scholar 

  3. N. B. Schwartz, The role of FSH and LH and of their antibodies on follicle growth and on ovulation,Biol. Reprod. 10:236 (1974).

    Google Scholar 

  4. A. J. Zeleznik, Premature elevation of systemic estradiol reduces serum levels of follicle stimulating hormone and lengthens the foilicular phase of the menstrual cycle in Rhesus monkeys,Endocrinology 109:352–355 (1981).

    Google Scholar 

  5. D. T. Baird, R. Horton, D. Longcope, and J. F. Tait, Steroid dynamics under steady state conditions,Recent Prog. Hormone Res. 25:611–664 (1969).

    Google Scholar 

  6. C. M. Cargille, G. T. Ross, and T. Yoshimi, Daily variation in plasma follicle stimulating hormone, luteinizing hormone, and progesterone in the normal menstrual cycle,J. Clin. Endocrinol. Metab. 29:12–19 (1969).

    Google Scholar 

  7. T. Pedersen, Follicle kinetics in the ovary of the cyclic mouse,Acta Endocrinol. 64:304–323 (1970).

    Google Scholar 

  8. L. Speroff and R. L. VandeWiele, Regulation of the human menstrual cycle,Am. J. Obstet. Gynecol. 109:234 (1971).

    Google Scholar 

  9. C. C. Tsai and S. S. C. Yen, Acute effects of intravenous infusion of 17b-estradiol on gonadotropin release in pre- and postmenopausal women,J. Clin. Endocrinol. Metab. 32:766–771 (1971).

    Google Scholar 

  10. C. M. Tapper and K. Grant-Brown, The secretion and metabolic clearance rates of estradiol in the rat,J. Endocrinol. 64:215–227 (1975).

    Google Scholar 

  11. E. Akin and H. M. Lacker, Ovulation control: The right number or nothing,J. Math. Biol. 20:113–132 (1984).

    Google Scholar 

  12. H. M. Lacker and E. Akin, How do the ovaries count?,Math. Biosci. 90:305–332 (1987).

    Google Scholar 

  13. H. M. Lacker, M. E. Feuer and E. Akin, Cell to cell signalling through circulatory feedback: A mathematical model of the mechanism of follicle selection in the mammalian ovary, inCell to Cell Signalling: From Experiments to Theoretical Models, A. Goldbeter, ed. (Academic Press, London, 1989), pp. 359–385.

    Google Scholar 

  14. H. M. Lacker, W. H. Beers, L. E. Meuli, and E. Akin, A theory of follicle selection: I. Hypotheses and examples,Biol. Reprod. 37:570–580 (1987).

    Google Scholar 

  15. H. M. Lacker, W. H. Beers, L. E. Meuli, and E. Akin, A theory of follicle selection: II. Computer simulation of estradiol administration in the primate,Biol. Reprod. 37:581–588 (1987).

    Google Scholar 

  16. L. E. Meuli, H. M. Lacker, and R. B. Thau, Experimental evidence supporting a mathematical theory of the physiological mechanism regulating follicle development and ovulation number,Biol. Reprod. 37:589–594 (1987).

    Google Scholar 

  17. H. M. Lacker, Temporal order and disorder in a model that regulates ovulation number, inTemporal Disorder in Human Oscillatory Systems, L. Rensing, U. an der Heiden, and M. C. Mackey, eds. (Springer-Verlag, Berlin, 1986), pp. 248–257.

    Google Scholar 

  18. A. McLaren, The distribution of eggs and embryos between sides in the mouse,J. Endocrinol. 27:157 (1963).

    Google Scholar 

  19. D. S. Falconer, R. G. Edwards, R. E. Fowler, and R. C. Roberts, Analysis of differences in the number of eggs shed by the two ovaries of mice during natural estrous and after superovulation,J. Reprod. Fertil. 2:418–437 (1961).

    Google Scholar 

  20. F. W. Brambell, Reproduction in the common shrew. I. The estrous cycle of the female, inPhilos. Trans. R. Soc. Lond. B Biol. Sci. 225:1 (1935).

    Google Scholar 

  21. F. W. Brambell and K. Hall, Reproduction in the lesser shrew,Proc. Zool. Soc. Lond. 106:957 (1936).

    Google Scholar 

  22. F. W. Brambell and I. W. Rowlands, Reproduction of the bank vole, Vol. 1. The estrous cycle of the female,Philos. Trans. R. Soc. Lond. B Biol. Sci. 226:71 (1936).

    Google Scholar 

  23. C. H. Danforth and S. B. de Aberle, The functional interrelation of the ovaries as indicated by the distribution of fetuses in mouse uteri,Am. J. Anat. 41:65 (1928).

    Google Scholar 

  24. J. D. Murray, G. F. Oster, and A. K. Harris, A mechanical model for mesenchymal morphogenesis,J. Math. Biol. 17:125 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michael Lacker, H., Percus, A. How do ovarian follicles interact? A many-body problem with unusual symmetry and symmetry-breaking properties. J Stat Phys 63, 1133–1161 (1991). https://doi.org/10.1007/BF01030003

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01030003

Key words

Navigation