Skip to main content
Log in

High-precision Monte Carlo test of the conformai-invariance predictions for two-dimensional mutually avoiding walks

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let ζ l be the critical exponent associated with the probability thatl independentN-step ordinary random walks, starting at nearby points, are mutually avoiding. Using Monte Carlo methods combined with a maximum-likelihood data analysis, we find that in two dimensions ζ2=0.6240±0.0005±0.0011 and ζ3=1.4575±0.0030±0.0052, where the first error bar represents systematic error due to corrections to scaling (subjective 95% confidence limits) and the second error bar represents statistical error (classical 95% confidence limits). These results are in good agreement with the conformal-invariance predictions ζ2=5/8 and ζ3=35/24.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Erdős and S. J. Taylor,Acta Math. Acad. Sci. Hungar. 11:231 (1960).

    Google Scholar 

  2. G. F. Lawler,Duke Math. J. 47:655 (1980).

    Google Scholar 

  3. G. F. Lawler,Commun. Math. Phys. 86:539 (1982).

    Google Scholar 

  4. G. F. Lawler,Commun. Math. Phys. 97:583 (1985).

    Google Scholar 

  5. G. F. Lawler,Contemp. Math. 41:281 (1985).

    Google Scholar 

  6. K. Burdzy, G. F. Lawler, and T. Polaski,J. Stat. Phys. 56:1 (1989).

    Google Scholar 

  7. K. Burdzy and G. F. Lawler,Prob. Theory Rel. Fields 84:393 (1990).

    Google Scholar 

  8. K. Burdzy and G. F. Lawler, Non-intersection exponents for Brownian paths. Part II. Estimates and applications to a random fractal,Ann. Prob., to appear.

  9. J. Fröhlich, inProgress in Gauge Field Theory (1983 Cargèse lectures), G. 't Hooftet al., eds. (Plenum, New York, 1984).

    Google Scholar 

  10. G. Felder and J. Fröhlich,Commun. Math. Phys. 97:111 (1985).

    Google Scholar 

  11. M. Aizenman,Commun. Math. Phys. 97:91 (1985).

    Google Scholar 

  12. Y. M. Park,J. Stat Phys. 57:319 (1989).

    Google Scholar 

  13. R. Fernández, J. Fröhlich, and A. D. Sokal,Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Springer-Verlag, to appear).

  14. M. E. Cates and T. A. Witten,Phys. Rev. A 35:1809 (1987).

    Google Scholar 

  15. J.-F. Joanny, L. Leibler, and R. Ball,J. Chem. Phys. 81:4640 (1984).

    Google Scholar 

  16. G. F. Lawler, private communication.

  17. B. Duplantier,Commun. Math. Phys. 117:279 (1988).

    Google Scholar 

  18. W. Feller,An Introduction to Probability Theory and Its Applications, Vol. I, 3rd ed. (Wiley, New York, 1968), Sections III.1–III.3.

    Google Scholar 

  19. B. Davis,Ann. Prob. 7:913 (1979).

    Google Scholar 

  20. B. Duplantier and K.-H. Kwon,Phys. Rev. Lett. 61:2514 (1988).

    Google Scholar 

  21. B. Duplantier,Phys. Rev. Lett. 57:941, 2332(E) (1986);J. Stat. Phys. 54:581 (1989).

    Google Scholar 

  22. K. Ohno and K. Binder,J. Phys. (Paris)49:1329 (1988).

    Google Scholar 

  23. H. Saleur,J. Phys. A 19:L807 (1986).

    Google Scholar 

  24. B. Duplantier,J. Phys. A 19:L1009 (1986).

    Google Scholar 

  25. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov,Nucl. Phys. B 241:333 (1984).

    Google Scholar 

  26. J. L. Cardy, inPhase Transitions and Critical Phenomena, Vol.11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987).

    Google Scholar 

  27. P. Ginsparg, inFields, Strings and Critical Phenomena (Les Houches 1988), E. Brèzin and J. Zinn-Justin, eds. (Elsevier, 1989).

  28. H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale,Phys. Rev. Lett. 56:742 (1986).

    Google Scholar 

  29. I. Affleck,Phys. Rev. Lett. 56:746 (1986).

    Google Scholar 

  30. C. Itzykson, H. Saleur and J.-B. Zuber,Europhys. Lett. 2:91 (1986).

    Google Scholar 

  31. V. G. Kac, inGroup Theoretical Methods in Physics (Lecture Notes in Physics #94), W. Beiglbock and A. Bohm, eds. (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  32. B. L. Feigin and D. B. Fuks,Funkt. Anal. Prilozhen. 16:47 (1982) [Funct. Anal. Appl. 16:114 (1982)].

    Google Scholar 

  33. B. L. Feigin and D. B. Fuchs, inTopology (Lecture Notes in Mathematics #1060), L. D. Faddeev and A. A. Mal'cev, eds. (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  34. V. G. Kac and A. K. Raini,Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras (World Scientific, Singapore, 1987).

    Google Scholar 

  35. V. G. Kac and M. Wakimoto,Proc. Natl. Acad. Sci. USA 85:4956 (1988).

    Google Scholar 

  36. D. Altschuler,J. Phys. A 22:L325 (1989).

    Google Scholar 

  37. H. Saleur,J. Phys. A 20:455 (1987).

    Google Scholar 

  38. B. Duplantier and H. Saleur,Nucl. Phys. B 290[FS20]:291 (1987).

    Google Scholar 

  39. V. S. Dotsenko and V. A. Fateev,Nucl. Phys. B 240[FS12]:312 (1984).

    Google Scholar 

  40. K. Osterwalder and R. Schrader,Commun. Math. Phys. 31:83 (1973);42:281 (1975).

    Google Scholar 

  41. J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon,Commun. Math. Phys. 62:1 (1978).

    Google Scholar 

  42. G. Felder, J. Fröhlich, and G. Keller,Commun. Math. Phys. 124:417 (1989).

    Google Scholar 

  43. D. Friedan, Z. Qiu, and S. Shenker,Phys. Rev. Lett. 52:1575 (1984);Commun. Math. Phys. 107:535 (1986).

    Google Scholar 

  44. P. Goddard, A. Kent, and D. Olive,Commun. Math. Phys. 103:105 (1986).

    Google Scholar 

  45. V. G. Kac and M. Wakimoto, inConformal Groups and Related Symmetries: Physical Results and Mathematical Background (Lecture Notes in Physics #261), A. O. Barut and H.-D. Doebner, eds. (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  46. A. Tsuchiya and Y. Kanie,Duke Math. J. 53:1013 (1986).

    Google Scholar 

  47. S. D. Silvey,Statistical Inference (Chapman and Hall, London, 1975).

    Google Scholar 

  48. E. L. Lehmann,Theory of Point Estimation (Wiley, New York, 1983).

    Google Scholar 

  49. A. Berretti and A. D. Sokal,J. Stat. Phys. 40:483 (1985).

    Google Scholar 

  50. F. J. Wegner,Phys. Rev. B 5:4529 (1972).

    Google Scholar 

  51. D. E. Knuth,The Art of Computer Programming, Vol. 3 (Addison-Wesley, Reading, Massachusetts, 1973), Section 6.4.

    Google Scholar 

  52. N. Madras and A. D. Sokal,J. Stat. Phys. 50:109 (1988).

    Google Scholar 

  53. D. E. Knuth,The Art of Computer Programming, Vol. 2, 2nd ed. (Addison-Wesley, Reading, Massachusetts, 1981), Chapter 3.

    Google Scholar 

  54. J. Chiabaut, Multipliers for linear congruential pseudorandom sequences, Ultracomputer Note #125, Courant Institute of Mathematical Sciences, New York University (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Sokal, A.D. High-precision Monte Carlo test of the conformai-invariance predictions for two-dimensional mutually avoiding walks. J Stat Phys 61, 723–748 (1990). https://doi.org/10.1007/BF01027299

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027299

Key words

Navigation