Skip to main content
Log in

Use of ECMWF operational analyses for studies of the tropical cyclone environment

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

This study examined ECMWF operational analyses of the outflow layer of two tropical cyclones (Allen, 1980; Elena, 1985) during their passage across the Atlantic and Caribbean. Wind fields and related derived quantities were compared to those from objective analyses of specialized data sets. Errors in center position and storm motion from the ECMWF analyses were also evaluated.

Analyses of wind and angular momentum flux in 1985, subsequent to upgrading of the operational model, were superior to those from 1980. High-resolution, uninitialized analyses from 1985, however, provided no advantages over lower resolution, initialized analyses for the same time period. For all ECMWF analyses, azimuthally averaged (mean) tangential velocity, and thus mean vorticity, were well represented. Mean radial velocity and mean divergence were poorly represented. Problems with the latter arose primarily due to underestimation of outflow, especially in the 1980 analyses. Azimuthaleddy fluxes of angular momentum in the ECMWF analyses quantitatively differed from but qualitatively resembled, the control analyses.

Vorticity maxima at 850 mb in the operational analyses most accurately defined the center position of the storms, with a mean error less than or equal to one grid point. In contrast, surface pressure minima failed to provide reliable estimates. Over open ocean and at early stages of storms, analysis quality was uneven, with occasional large position errors and widely varying locations of vorticity maxima in the vertical.

Nevertheless, in regions surrounded by even a few rawinsondes, such as the Caribbean or Gulf of Mexico, ECMWF analyses contained sufficient information to allow individual case studies of the tropical cyclone environment. In the same regions, estimates of the eddy flux convergence of angular momentum were found to be accurate enough to aid in operational hurricane intensity prediction. Enhancements in resolution and model initialization at ECMWF since 1985 should further improve operational analyses of the tropical cyclone environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achtemeier, G. L., 1989: Modification of a successive corrections objective analysis for improved derivative calculations.Mon. Wea. Rev.,117, 78–86.

    Google Scholar 

  • Barnes, S. L., 1964: A technique for maximizing detalls in numerical weather map analysis.J. Appl. Meteor. 3, 396–409.

    Google Scholar 

  • Bengtsson, L., Kanamitsu, M., Kallberg, P., Uppala, S., 1982: FGGE 4-dimensional data assimilation at ECMWF.Bull. Amer. Meteor. Soc.,63, 29–43.

    Google Scholar 

  • Benjamin, S. G., Seaman, N. L., 1985: A simple scheme for objective analysis in curved flow.Mon. Wea. Rev.,113, 1184–1198.

    Google Scholar 

  • Betts, A. K., Miller, M. J., 1986: A new convective scheme: Part II: Single column tests using GATE wave, Bomex, and arctic air-mass data sets.Quart. J. Roy. Meteor. Soc.,112, 693–710.

    Google Scholar 

  • Bosart, L. F., Bartlo, J. A., 1991: Tropical storm formation in a baroclinic environment.Mon. Wea. Rev.,119, 1979–2013.

    Google Scholar 

  • Carr, E. L., 1987: Objective data analysis conference.Bull. Amer. Meteor. Soc.,68, 481–485.

    Google Scholar 

  • DeMaria, M., Baik, J.-J. Kaplan, J. 1992: Upper level eddy angular momentum fluxes and tropical cyclone intensity change.J. Atmos. Sci. (submitted).

  • Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a circular vortex.Astrophys. Norv,5, 19–60.

    Google Scholar 

  • Elsberry, R. L., Kirchoffer, P. J., 1988: Upper-level forcing of explosive cyclogenesis over the ocean based on operationally analyzed fields.Wea. For.,3, 205–216.

    Google Scholar 

  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone II: Dynamics and energetics.Mon. Wea. Rev.,105, 1136–1150.

    Google Scholar 

  • Gray, W. M., 1979: Hurricanes: Their formation, structure, and likely role in the tropical circulation. In: Shaw, D. B. (ed.)Meteorology over the Tropical Oceans. Royal Meteorological Soc., 155–218.

  • Gray, W. M., 1988: Environmental influences on tropical cyclones.Austr. Meteor. Mag.,36, 127–138.

    Google Scholar 

  • Heckley, W. A., Miller, M. J., Betts, A. K., 1987: An example of hurricane tracking and forecasting with global analysisforecasting system.Bull. Amer. Meteor. Soc.,68, 226–229.

    Google Scholar 

  • Heckley, W. A., Kelly, G., Tiedtke, M., 1990: On the use of satellite-derived heating rates for data assimilation within the tropics.Mon. Wea. Rev.,118, 1743–1757.

    Google Scholar 

  • Holland, G. J., 1983: Angular momentum transports in tropical cyclones.Quart. J. Roy. Meteor. Soc.,109, 187–210.

    Google Scholar 

  • Holland, G. J., Merrill, R. T., 1984: On the dynamics of tropical cyclone structural changes.Quart. J. Roy. Meteor. Soc.,110, 723–745.

    Google Scholar 

  • Hollingsworth, A., 1987: Objective analysis for numerical weather prediction. In: Matsuno, T. (ed.) Short and medium range numerical weather prediction.Meteor. Soc. Japan. Universal Academy Press, Tokyo, pp. 11–60.

    Google Scholar 

  • Hollingsworth, A., Horn, J., Uppala, S., 1989: Verification of FGGE assimilations of the tropical wind field: The effect of model and data bias.Mon. Wea. Rev.,117, 1017–1038.

    Google Scholar 

  • Kanamitsu, M., 1985: A study of the predictability of the ECMWF operational forecast model in the tropics.J. Meteor. Soc. Japan,63, 779–804.

    Google Scholar 

  • Krishnamurti, T. N., 1989: Prediction of the life cycle of a super typhoon with a high resolution global model.Bull. Amer. Meteor. Soc.,70, 1218–1230.

    Google Scholar 

  • Lau, K.-H., Lau, N.-C., 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances.Mon. Wea. Rev.,118, 1888–1913.

    Google Scholar 

  • Lawrence, M. B., Pelissier, J. M., 1981: Atlantic hurricane season of 1980.Mon. Wea. Rev.,109, 1567–1582.

    Google Scholar 

  • Lee, C. S., Edson, R., Gray, W. M., 1989: Some large scale characteristics associated with tropical cyclone development in the North Indian Ocean during FGGE.Mon. Wea. Rev.,117, 407–426.

    Google Scholar 

  • Lorenc, A. C., 1981: A global three-dimensional multivariate statistical interpolation scheme.Mon. Wea. Rev.,109, 701–721.

    Google Scholar 

  • Manobianco, J., 1989: Explosive east coast cyclogenesis over the west-central north Atlantic Ocean: A composite study derived from ECMWF operational analyses.Mon. Wea. Rev.,117, 2365–2383.

    Google Scholar 

  • McBride, J. L., Zehr, R., 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of nondeveloping versus developing systems.J. Atmos. Sci.,38, 1132–1151.

    Google Scholar 

  • Molinari, J., Vollaro, D., 1989a: External influences on hurricane intensity: Part I Outflow layer eddy angular momentum fluxes.J. Atmos. Sci. 46, 1093–1105.

    Google Scholar 

  • Molinari, J., Vollaro, D., 1989b: Interaction of a hurricane with a baroclinic wave. Preprints, 18th Conf. on Hurricanes and Tropical Meteorology, Miami, 318–320. [A vailable from American Meteorological Society, 45 Beacon St., Boston, MA 02108.]

  • Molinari, J., Vollaro, D., 1990: External influences on hurricane intensity: Part II. Vertical structure and response of the hurricane vortex.J. Atmos. Sci.,47, 1902–1918.

    Google Scholar 

  • Montgomery, M. T., Farrell, B. F., 1992: Tropical cyclone formation.J. Atmos. Sci.,49 (in press).

  • Ogura, Y., Chin, H. N., 1987: A case study of cross-equatorial twin vortices over the Pacific in the northern winter using FGGE data.J. Meteor. Soc. Japan. 65, 669–674.

    Google Scholar 

  • Ooyama, K., 1987: Scale-controlled objective analysis.Mon. Wea. Rev.,115, 2479–2506.

    Google Scholar 

  • Pauley, P. M., 1990. On the evolution of boundary errors in the Barnes objective analysis scheme.Mon. Wea. Rev.,118, 1203–1210.

    Google Scholar 

  • Pauley, P. M., Wu, X., 1990: The theoretical, discrete, and actual response of the Barnes objective analysis scheme for one- and two-dimensional fields.Mon. Wea. Rev.,118, 1145–1163.

    Google Scholar 

  • Pfeffer, R. L., Challa, M., 1981: A numerical study of the role of eddy fluxes of momentum in the development of Atlantic hurricanes.J. Atmos. Sci.,38, 2393–2398.

    Google Scholar 

  • Puri, K., Gauntlett, D. J., 1987: Numerical weather prediction in the tropics. In: Matsuno, T. (ed.) Short and medium range numerical weather prediction.Meteor. Soc. Japan, Universal Academy Press, Tokyo, 605–632.

    Google Scholar 

  • Puri, K., Lonnberg, P., 1991. Use of high-resolution structure functions and modified quality control in the analysis of tropical cyclones.Mon. Wea. Rev.,119, 1151–1167.

    Google Scholar 

  • Puri, K., Miller, M. J., 1990: Sensitivity of ECMWF analysesforcasts of tropical cyclones to cumulus parameterization.Mon. Wea. Rev.,118, 1709–1741.

    Google Scholar 

  • Reed, R. J., Hollingsworth, A., Heckley, W. A., Delsol F., 1988a: An evaluation of the performance of the ECMWF operational system in analyzing and forecasting easterly wave disturbances over Africa and the tropical Atlantic.Mon. Wea. Rev.,116, 824–865.

    Google Scholar 

  • Reed, R. J., Simmons, A. J., Albright, M. D., Unden, P., 1988b: The role of latent heat release in explosive cyclogenesis: Three examples based on ECMWF operational forecasts.Wea. For.,3, 217–229.

    Google Scholar 

  • Sanders, F., 1986: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior.Mon. Wea. Rev.,114, 1781–1794.

    Google Scholar 

  • Skubis, S., Molinari, J., 1987: Angular momentum variation in a translating cyclone.Quart. J. Roy. Meteor. Soc.,113, 1041–1048.

    Google Scholar 

  • Talagrand, O., Courtier, P., 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation-Part I: Theory.Quart. J. Roy. Meteor. Soc.,113, 1311–1328.

    Google Scholar 

  • Tiedtke, M., Heckley, W. A., Slingo, J., 1988: Tropical forecasting at ECMWF: The influence of physical parameterization on the mean structure of forecasts and analyses.Quart. J. Roy. Meteor. Soc.,114, 639–664.

    Google Scholar 

  • Trenberth, K. E., Olson, J. G., 1988: An evaluation and intercomparison of global analyses from the National Meteorological Center and the European Centre for Medium Range Weather Forecasts.Bull. Amer. Meteor. Soc.,69, 1047–1057.

    Google Scholar 

  • Unden, P., 1989: Tropical data assimilation and analysis of divergence.Mon. Wea. Rev.,117, 2495–2517.

    Google Scholar 

  • Wergen, W., 1988: The diabatic ECMWF normal mode initialization scheme.Beitr. Phys. Atmos.,61, 274–302.

    Google Scholar 

  • Willoughby, H. E., Clos, J. A., Shoreibah, M. G., 1982: Concentric eye walls, secondary wind maxima, and the evolution of a hurricane vortex.J. Atmos. Sci.,39, 395–411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 11 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molinari, J., Vollaro, D. & Robasky, F. Use of ECMWF operational analyses for studies of the tropical cyclone environment. Meteorl. Atmos. Phys. 47, 127–144 (1992). https://doi.org/10.1007/BF01025613

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025613

Keywords

Navigation