Skip to main content
Log in

Linear and nonlinear relaxation and cluster dynamics near critical points

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The critical slowing down of anisotropic magnets, binary mixtures, and systems undergoing structural transitions is interpreted in terms of suitable defined “clusters,” their growth, and their motions (cluster reactions, cluster diffusion, and cluster waves). Our previous studies of the Glauber model are extended considerably by numerical calculations, including the use of the cluster model of Reatto and Rastelli. The behavior of the relaxation function is very insensitive to the details of the models used. A scaling theory of nonlinear response is given, which is far more general than the cluster dynamics treatment. Two different cases occur:(i) at fixed “relative nonlinearity” the critical exponents agree with the corresponding exponents of linear response; (ii) if the initial state is held fixed, different exponents are found, however, which agree with predictions of Racz, and are consistent with Monte Carlo simulations of the nonlinear slowing down of the energy in kinetic Ising models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ogita, A. Keda, T. Matsubara, H. Matsuda, and F. Yonezawa,J. Phys. Soc. Japan (Suppl.) 26:145 (1969).

    Google Scholar 

  2. L. P. Kadanoff, inCritical Phenomena, M. S. Green, ed., Academic, New York (1971), p. 118.

    Google Scholar 

  3. A. M. Gottlieb and P. Heller,Phys. Rev. B 3:3615 (1971).

    Google Scholar 

  4. G. J. Adriaenssens,Phys. Rev. B 12:5116 (1975); G. J. Adriaenssens, J. Bjorkstam, and J. Aikins,J. Mag. Resonance 7:99 (1972).

    Google Scholar 

  5. R. L. Armstrong and C. A. Martin,Phys. Rev. Lett. 35:294 (1975).

    Google Scholar 

  6. S. Aubry and R. Pick,Ferroelectrics 8:471 (1974).

    Google Scholar 

  7. S. Aubry, Thesis, CEN, Saclay (1974), unpublished.

    Google Scholar 

  8. J. A. Krumhansl and J. R. Schrieffer,Phys. Rev. B 11:3535 (1975).

    Google Scholar 

  9. T. Schneider and E. Stoll,J. Phys. C 8:283 (1975);Phys. Rev. B 13:1216 (1976).

    Google Scholar 

  10. B. J. Ackerson, C. M. Sorensen, R. C. Mockler, and W. J. O'Sullivan,Phys. Rev. Lett. 34:1371 (1975).

    Google Scholar 

  11. F. Schwabl, inAnharmonic Lattices, Structural Transitions and Melting, T. Riste, ed., Leiden, Nordhoff (1974).

    Google Scholar 

  12. K. Binder, D. Stauffer, and H. Müller-Krumbhaar,Phys. Rev. B 10:3853 (1974).

    Google Scholar 

  13. K. Binder, D. Stauffer, and H. Müller-Krumbhaar,Phys. Rev. B 12:5261 (1975).

    Google Scholar 

  14. K. Binder and D. Stauffer,Phys. Rev. Lett. 33:1006 (1974).

    Google Scholar 

  15. M. E. Fisher,Physics 3:255 (1967).

    Google Scholar 

  16. E. Stoll, K. Binder, and T. Schneider,Phys. Rev. B 6:2777 (1972); K. Binder and H. Müller-Krumbhaar,Phys. Rev. B 9:2328 (1974).

    Google Scholar 

  17. K. Binder,Ann. Phys. (N.Y.) 98:in press (1976).

  18. H. Müller-Krumbhaar,Phys. Lett. 48A:459 (1974);50A:27 (1974).

    Google Scholar 

  19. J. W. Essam, inPhase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds., Academic, New York (1972), Vol. 2, p. 197.

    Google Scholar 

  20. L. P. Kadanoff,Physics 2:263 (1966).

    Google Scholar 

  21. K. G. Wilson and J. Kogut,Phys. Rep. 12C:75 (1974); K. G. Wilson,Rev. Mod. Phys. 41:773 (1975).

    Google Scholar 

  22. J. S. Langer,Physics 73:61 (1974).

    Google Scholar 

  23. A. I. Larkin and D. E. Khmelnitzkii,Soviet Phys.—JETP 29:1123 (1969).

    Google Scholar 

  24. M. E. Fisher,Rep. Prog. Phys. 30:615 (1967).

    Google Scholar 

  25. C. Domb and M. S. Green, eds.,Phase Transitions and Critical Phenomena, Academic, New York (1972), Vols. 1–6.

    Google Scholar 

  26. P. G. de Gennes, P. Lafore, and J. P. Millet,J. Phys. Chem. Solids 11:105 (1959).

    Google Scholar 

  27. K. Binder and D. Stauffer,J. Stat. Phys. 6:49 (1972); C. Domb, T. Schneider, and E. Stoll,J. Phys. A 8:L90 (1975).

    Google Scholar 

  28. C. Domb,J. Phys. A 9:283 (1976).

    Google Scholar 

  29. C. K. Majumdar,Phys. Rev. B 10:2857 (1974).

    Google Scholar 

  30. D. Stauffer, C. S. Kiang, and G. H. Walker,J. Stat. Phys. 3:323 (1971).

    Google Scholar 

  31. B. I. Halperin and P. C. Hohenberg,Phys. Rev. 177:952 (1969).

    Google Scholar 

  32. M. M. Bakri and D. Stauffer, preprint.

  33. A. F. Andreev,Soviet Phys.—JETP 18:1415 (1964).

    Google Scholar 

  34. L. Reatto and E. Rastelli,J. Phys. C 5:2785 (1972).

    Google Scholar 

  35. K. Binder and D. Stauffer,Adv. Phys., in press (1976).

  36. E. Stoll, K. Binder, and T. Schneider,Phys. Rev. B 8:3266 (1973).

    Google Scholar 

  37. L. van Hove,Physica 21:517 (1955).

    Google Scholar 

  38. D. Stauffer and K. Binder, in preparation.

  39. B. I. Halperin, P. C. Hohenberg, and S. K. Ma,Phys. Rev. B 10:139 (1974).

    Google Scholar 

  40. T. L. Einstein and R. Cohen,Phys. Rev. B 7:1932 (1973).

    Google Scholar 

  41. T. P. Tseng, S. K. Feng, C. Cheng, and W. Band,J. Chem. Phys. 8:20 (1940); J. L. Katz, H. Saltsburg, and H. Reiss,J. Colloid Interface Sci. 21:560 (1966).

    Google Scholar 

  42. J. Frenkel,Kinetic Theory of Liquids, Dover, New York (1946), Chapter VII.

    Google Scholar 

  43. R. Zwanzig and N. K. Ailawadi,Phys. Rev. 182:280 (1969).

    Google Scholar 

  44. B. U. Felderhof,Rept. Math. Phys. 1:215 (1971);2:251 (1971).

    Google Scholar 

  45. R. Kretschmer,Diplomarbeit, Universität Saarbrücken (1975), unpublished.

  46. L. Collatz,Eigenwertaufgaben mit technischen Anwendungen, Akademische Verlagsges., Leipzig (1963), p. 355.

    Google Scholar 

  47. A. Baumgärtner and K. Binder, in preparation.

  48. R. Richtmeyer and K. W. Morton,Difference Methods for Initial Value Problems, Interscience, New York (1967), p. 190.

    Google Scholar 

  49. H. Yahata,J. Phys. Soc. Japan 30:657 (1971).

    Google Scholar 

  50. M. T. Hutchings, M. P. Schulhof, and H. J. Guggenheim,Phys. Rev. B 5:154 (1972).

    Google Scholar 

  51. M. Suzuki,Prog. Theor. Phys. 42, 1076 (1969);43, 882 (1970);Int. J. Magn. 1, 123 (1971).

    Google Scholar 

  52. Z. Racz,Phys. Rev. B 13:263 (1976); M. E. Fisher and Z. Racz, preprint.

    Google Scholar 

  53. M. F. Collins and Z. Racz,Phys. Rev. B 13:3074 (1976).

    Google Scholar 

  54. M. Suzuki, preprint.

  55. K. Binder, inPhase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds., Academic, New York (1976), Vol. 5b, p. 1.

    Google Scholar 

  56. K. Binder and D. P. Landau,Phys. Rev. B 13:1140 (1976).

    Google Scholar 

  57. D. P. Landau, preprint.

  58. H. C. Bolton and C. H. Johnson,Phys. Rev. B 13:3025 (1976).

    Google Scholar 

  59. M. F. Collins and H. C. Teh,Phys. Rev. Lett. 30, 781 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretschmer, R., Binder, K. & Stauffer, D. Linear and nonlinear relaxation and cluster dynamics near critical points. J Stat Phys 15, 267–297 (1976). https://doi.org/10.1007/BF01023054

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023054

Key words

Navigation