Skip to main content
Log in

Some results on the behavior and estimation of the fractal dimensions of distributions on attractors

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The strong interest in recent years in analyzing chaotic dynamical systems according to their asymptotic behavior has led to various definitions of fractal dimension and corresponding methods of statistical estimation. In this paper we first provide a rigorous mathematical framework for the study of dimension, focusing on pointwise dimensionσ(x) and the generalized Renyi dimensionsD(q), and give a rigorous proof of inequalities first derived by Grassberger and Procaccia and Hentschel and Procaccia. We then specialize to the problem of statistical estimation of the correlation dimension ν and information dimensionσ. It has been recognized for some time that the error estimates accompanying the usual procedures (which generally involve least squares methods and nearest neighbor calculations) grossly underestimate the true statistical error involved. In least squares analyses of ν andσ we identify sources of error not previously discussed in the literature and address the problem of obtaining accurate error estimates. We then develop an estimation procedure forσ which corrects for an important bias term (the local measure density) and provides confidence intervals forσ. The general applicability of this method is illustrated with various numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Badii and A. Politi, Statistical description of chaotic attractors: The dimension function,J. Stat. Phys. 40:725–750 (1985).

    Google Scholar 

  2. M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals,Proc. R. Soc. Land. A 399:243–275 (1985).

    Google Scholar 

  3. C. Beck, Upper and lower bounds on the Renyi dimensions and the uniformity of multifractals,Physica D 41:67–78 (1990).

    Google Scholar 

  4. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, On the multifractal nature of fully developed turbulence and chaotic systems,J. Phys. A: Math. Gen. 17:3521–3531 (1984).

    Google Scholar 

  5. P. J. Bickel and L. Breiman, Sums of functions of nearest neighbor distances, moment bounds, limit theorems, and a goodness-of-fit test,Ann. Prob. 11:185–214 (1983).

    Google Scholar 

  6. P. Billingsley, Hausdorff dimension in probability theory,Illinois J. Math. 4:187–209 (1960).

    Google Scholar 

  7. P. Billingsley, Hausdorff dimension in probability theory II,Illinois J. Math. 5:291–298 (1961).

    Google Scholar 

  8. P. Billingsley,Ergodic Theory and Information (Krieger, New York, 1978).

    Google Scholar 

  9. J. R. Blum, H. Chernoff, M. Rosenblatt, and H. Teicher, Central limit theorems for interchangeable processes,Can. J. Math. 10:222–229 (1958).

    Google Scholar 

  10. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows,Invent. Math. 29:181–202 (1975).

    Google Scholar 

  11. R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals, Preprint (1990).

  12. Y. S. Chow and H. Teicher,Probability Theory: Independence, Interchangeability, Martingales, 2nd ed. (Springer-Verlag, New York, 1988).

    Google Scholar 

  13. P. Collet. J. L. Lebowitz, and A. Porzio, The dimension spectrum of some dynamical systems,J. Stut. Phys. 47:609–644 (1987).

    Google Scholar 

  14. C. D. Cutler, The Hausdorff dimension distribution of finite measures in Euclidean space,Can. J. Math. 38:1459–1484 (1986).

    Google Scholar 

  15. C. D. Cutler, Connecting ergodicity and dimension in dynamical systems,Ergodic Theory Dynam. Syst. 10:451–462 (1990).

    Google Scholar 

  16. C. D. Cutler,kth nearest neighbors and the generalized logistic distribution, inThe Logistic Distribution, N. Balakrishnan, ed. (Marcel Dekker, New York, 1991).

    Google Scholar 

  17. C. D. Cutler, A dynamical system with integer information dimension and fractal correlation exponent,Commun. Math. Phys. 129:621–629 (1990).

    Google Scholar 

  18. C. D. Cutler, Measure disintegrations with respect toσ-stable monotone indices and the pointwise representation of packing dimension, Preprint (1990).

  19. C. D. Cutler and D. A. Dawson, Estimation of dimension for spatially-distributed data and related limit theorems,J. Multivariate Anal. 28:115–148 (1989).

    Google Scholar 

  20. C. D. Cutler and D. A. Dawson, Nearest neighbor analysis of a family of fractal distributions,Ann. Prob. 18:256–271 (1990).

    Google Scholar 

  21. M. Denker and G. Keller, Rigorous statistical procedures for data from dynamical systems,J. Stat. Phys. 44:67–93 (1986).

    Google Scholar 

  22. B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot, and S. W. Zucker, Evaluating the fractal dimension of profiles,Phys. Rev. A 39:1500–1512 (1989).

    Google Scholar 

  23. J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors,Rev. Mod. Phys. 57:617–656 (1985).

    Google Scholar 

  24. J. H. Elton, An ergodic theorem for iterated maps,Ergodic Theory Dynam. Syst. 7:481–488 (1987).

    Google Scholar 

  25. C. Essex, Correlation dimension and data sample size, Preprint (1987).

  26. C. Essex, T. Lookman, and M. A. H. Nerenberg, The climate attractor over short time scales,Nature 326:64–66 (1987).

    Google Scholar 

  27. K. J. Falconer,The Geometry of Fractal Sets (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  28. J. D. Farmer, E. Ott, and J. A. Yorke, The dimension of chaotic attractors,Physica D 7:153–180 (1983).

    Google Scholar 

  29. P. Grassberger, Are there really climate attractors?,Nature 322:609–612 (1986).

    Google Scholar 

  30. P. Grassberger and I. Procaccia, Characterization of strange attractors,Phys, Rev. Lett. 50:346–349 (1983).

    Google Scholar 

  31. P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors,Physica D 9:189–208 (1983).

    Google Scholar 

  32. P. Grassberger, R. Badii, and A. Politi, Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors,J. Stat. Phys. 51:135–178 (1988).

    Google Scholar 

  33. H. S. Greenside, A. Wolf, J. Swift, and T. Pignataro, Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors,Phys. Rev. A 25:3453–3456 (1982).

    Google Scholar 

  34. J. Guckenheimer, Dimension estimates for attractors,Contemp. Math. 28:357–367 (1984).

    Google Scholar 

  35. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal measures and their singularities: The characterization of strange sets,Phys. Rev. A 33:1141–1151 (1986).

    Google Scholar 

  36. M. Hénon, A two-dimensional mapping with a strange attractor,Commun. Math. Phys. 50:69–77 (1976).

    Google Scholar 

  37. H. G. E. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors,Physica D 8:435–444 (1983).

    Google Scholar 

  38. J. Holzfuss and G. Mayer-Kress, An approach to error estimation in the application of dimension algorithms, inDimensions and Entropies in Chaotic Systems: Quantification of Complex Behavior, G. Mayer-Kress, ed. (Springer-Verlag, New York, 1986).

    Google Scholar 

  39. F. Ledrappier and M. Misiurewicz, Dimension of invariant measures for maps with exponent zero,Ergodic Theory Dynam. Syst. 5:595–610 (1985).

    Google Scholar 

  40. G. Mayer-Kress, ed.,Dimensions and Entropies in Chaotic Systems: Quantification of Complex Behavior (Springer-Verlag, New York, 1986).

    Google Scholar 

  41. R. H. Myers,Classical and Modern Regression with Applications (Duxbury Press, Boston, 1986).

    Google Scholar 

  42. C. Nicolis and G. Nicolis, Is there a climatic attractor?,Nature 311:529–532 (1984).

    Google Scholar 

  43. E. Ott, W. D. Withers, and J. A. Yorke, Is the dimension of chaotic attractors invariant under coordinate changes?,J. Stat. Phys. 36:687–697 (1984).

    Google Scholar 

  44. N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Geometry from a time series,Phys. Rev. Lett. 45:712–716 (1980).

    Google Scholar 

  45. G. Paladin and S. Vaienti, Hausdorff dimensions in two-dimensional maps and thermodynamic formalism,J. Stat. Phys. 57:289–299 (1989).

    Google Scholar 

  46. G. Paladin and A. Vulpiani, Anomalous scaling laws in multifractal objects,Phys. Rep. 156:147–225 (1987).

    Google Scholar 

  47. J. Pickands III, Moment convergence of sample extremes,Ann. Math. Stat. 39:881–889 (1968).

    Google Scholar 

  48. J. B. Ramsey and H.-J. Yuan, The statistical properties of dimension calculations using small data sets,Nonlinearity 3:155–176 (1990).

    Google Scholar 

  49. D. A. Rand, The singularity spectrumf(α) for cookie-cutters,Ergodic Theory Dynam. Syst. 9:527–541 (1989).

    Google Scholar 

  50. C. A. Rogers,Hausdorff Measures (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  51. W. Rudin,Real and Complex Analysis, 2nd ed. (McGraw-Hill, New York, 1974).

    Google Scholar 

  52. X. Saint Raymond and C. Tricot, Packing regularity of sets inn-space,Math. Proc. Camb. Phil. Soc. 103:133–145 (1988).

    Google Scholar 

  53. F. Takens, Detecting strange attractors in turbulence, inLecture Notes in Mathematics, 898 (Springer-Verlag, Berlin, 1981), pp. 366–381.

    Google Scholar 

  54. F. Takens, On the numerical determination of the dimension of an attractor, inLecture Notes in Mathematics, 1125 (Springer-Verlag, Berlin, 1985), pp. 99–106.

    Google Scholar 

  55. S. J. Taylor, The measure theory of random fractals,Math. Proc. Camb. Phil. Soc. 100:383–406 (1986).

    Google Scholar 

  56. C. C. Taylor and S. J. Taylor, Estimating the dimension of a fractal,J. R. Stat. Soc., to appear.

  57. S. J. Taylor and C. Tricot, Packing measure, and its evaluation for a Brownian path,Trans. Am. Math. Soc. 288:679–699 (1985).

    Google Scholar 

  58. S. J. Taylor and C. Tricot, The packing measure of rectifiable subsets of the plane.Math. Proc. Camb. Phil. Soc. 99:285–296 (1986).

    Google Scholar 

  59. Y. Termonia and Z. Alexandrowicz, Fractional dimension of strange attractors from radius versus size of arbitrary clusters,Phys. Rev. Lett. 51:1265–1268 (1983).

    Google Scholar 

  60. C. Tricot, Rarefaction indices,Mathematika 27:46–57 (1980).

    Google Scholar 

  61. C. Tricot, Two definitions of fractional dimension,Math. Proc. Camb. Phil. Soc. 91:57–74 (1982).

    Google Scholar 

  62. C. Tricot, J. F. Quiniou, D. Wehbi, C. Roques-Carmes, and B. Dubuc, Evaluation de la dimension fractale d'un graphe, Preprint (1987).

  63. L.-S. Young, Dimension, entropy, and Lyapunov exponents,Ergodic Theory Dynam. Syst. 2:109–124 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutler, C.D. Some results on the behavior and estimation of the fractal dimensions of distributions on attractors. J Stat Phys 62, 651–708 (1991). https://doi.org/10.1007/BF01017978

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017978

Key words

Navigation