Skip to main content
Log in

Dielectric polarization in random media

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The theory of dielectric polarization in random media is systematically formulated in terms of response kernels. The primary response kernel K(12) governs the mean dielectric response at the pointr 1 to the external electric field at the pointr 2 in an infinite system. The inverse of K(12) is denoted by L(12); it is simpler and more fundamental than K(12) itself. Rigorous expressions are obtained for the effective dielectric constantε * in terms of L(12) and K(12). The latter expression involves the Onsager-Kirkwood function (ε *ε 0)(2ε *+ε 0) /ε0ε* (where ε0 is an arbitrary reference value), and appears to be new to the random medium context. A wide variety of series representations forε * are generated by means of general perturbation expansions for K(12) and L(12). A discussion is given of certain pitfalls in the theory, most of which are related to the fact that the response kernels are long ranged. It is shown how the dielectric behavior of nonpolar molecular fluids may be treated as a special case of the general theory. The present results forε * apply equally well to other effective phenomenological coefficients of the same generic type, such as thermal and electrical conductivity, magnetic susceptibility, and diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Brown, Jr.,J. Chem. Phys. 23:1514 (1955).

    Google Scholar 

  2. W. F. Brown, Jr.,Trans. Soc. Rheology 9:1:357 (1965).

    Google Scholar 

  3. V. M. Finkel'berg,Sov. Phys.-JETP 19:494 (1964).

    Google Scholar 

  4. S. Prager,J. Chem. Phys. 33:122 (1960).

    Google Scholar 

  5. Z. Hashin and S. Shtrikman,J. Appl. Phys. 33:3125 (1962).

    Google Scholar 

  6. M. Beran and J. Molyneux,Nuovo Cimento 30:1406 (1963).

    Google Scholar 

  7. V. M. Finkel'berg,Sov. Phys.-Doklady 8:907 (1964).

    Google Scholar 

  8. M. Beran,Nuovo Cimento 38:771 (1965).

    Google Scholar 

  9. D. J. Jeffrey,Proc. R. Soc. (London) Ser. A 335:355 (1973).

    Google Scholar 

  10. D. J. Jeffrey,Proc. R. Soc. (London) Ser. A 338:503 (1974).

    Google Scholar 

  11. G. K. Batchelor,Ann. Rev. Fluid Mech. 6:227 (1974).

    Google Scholar 

  12. M. Hori,J. Math. Phys. 14:514 (1973).

    Google Scholar 

  13. M. Hori,J. Math. Phys. 18:487 (1977).

    Google Scholar 

  14. T. Nagatani,J. Appl. Phys. 51:4944 (1980).

    Google Scholar 

  15. B. U. Felderhof, G. W. Ford, and E. G. D. Cohen,J. Slat. Phys. 28:135 (1982).

    Google Scholar 

  16. B. U. Felderhof, G. W. Ford, and E. G. D. Cohen,J. Stat. Phys. 28:649 (1982).

    Google Scholar 

  17. B. U. Felderhof,J. Phys. C: Solid State Phys. 15:1731, 3943, and 3953 (1982).

    Google Scholar 

  18. J. D. Ramshaw,J. Chem. Phys. 57:2684 (1972).

    Google Scholar 

  19. J. D. Ramshaw,J. Chem. Phys. 76:2635 (1982).

    Google Scholar 

  20. M. S. Wertheim,Mol. Phys. 26:1425 (1973).

    Google Scholar 

  21. J. D. Ramshaw,J. Chem. Phys. 76:1183 (1982).

    Google Scholar 

  22. J. J. McCoy,Quart. Appl. Math. 37:137 (1979).

    Google Scholar 

  23. J. R. Willis,Adv. Appl. Mech. 21:1 (1981).

    Google Scholar 

  24. B. U. Felderhof,Adv. Coll. Interf. Sci. 17:21 (1982).

    Google Scholar 

  25. J. D. Ramshaw,J. Chem. Phys. 70:1577 (1979).

    Google Scholar 

  26. J. D. Ramshaw,Physica 62:1 (1972).

    Google Scholar 

  27. D. Bedeaux and P. Mazur,Physica 67:23 (1973).

    Google Scholar 

  28. B. U. Felderhof,Physica 76:486 (1974).

    Google Scholar 

  29. J. D. Ramshaw,J. Chem. Phys. 73:3695 (1980).

    Google Scholar 

  30. J. D. Ramshaw,J. Chem. Phys. 64:3666 (1976).

    Google Scholar 

  31. G. S. Rushbrooke, inPhysics of Simple Liquids, H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, eds. (Wiley-Interscience, New York, 1968), p. 25.

    Google Scholar 

  32. K. S. Mendelson,J. Appl. Phys. 48:4903 (1977).

    Google Scholar 

  33. K. S. Mendelson and D. Schwacher, inElectrical Transport and Optical Properties of Inhomogeneous Media, J. C. Garland and D. B. Tanner, eds. (American Institute of Physics, AIP Conference Proceedings No. 40, New York, 1978), p. 349.

  34. W. F. Brown, Jr., inHandbuch der Physik, Vol. 17, S. Flügge, ed. (Springer, Berlin, 1956), p. 1.

    Google Scholar 

  35. J. S. HØye and G. Stell,J. Chem. Phys. 64:1952 (1976).

    Google Scholar 

  36. J. E. Gubernatis and J. A. Krumhansl,J. Appl. Phys. 46:1875 (1975).

    Google Scholar 

  37. E. Kröner and H. Koch,Solid Mech. Arch. 1:183 (1976).

    Google Scholar 

  38. J. E. Gubernatis, inElectrical Transport and Optical Properties of Inhomogeneous Media, J. C. Garland and D. B. Tanner, eds. (American Institute of Physics, AIP Conference Proceedings No. 40, New York, 1978), p. 84.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed under the auspices of the United States Department of Energy. A preliminary report on this work was given at the Eighth West Coast Statistical Mechanics Conference, University of California, Berkeley, 22 June 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramshaw, J.D. Dielectric polarization in random media. J Stat Phys 35, 49–75 (1984). https://doi.org/10.1007/BF01017364

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017364

Key words

Navigation