Skip to main content
Log in

Nonlinear transport in the Boltzmann limit

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Formal expressions for the irreversible fluxes of a simple fluid are obtained as functionals of the thermodynamic forces and local equilibrium time correlation functions. The Boltzmann limit of the correlation functions is shown to yield expressions for the irreversible fluxes equivalent to those obtained from the nonlinear Boltzmann kinetic equation. Specifically, for states near equilibrium, the fluxes may be formally expanded in powers of the thermodynamic gradients and the associated transport coefficients identified as integrals of time correlation functions. It is proved explicitly through nonlinear Burnett order that the time correlation function expressions for these transport coefficients agree with those of the Chapman-Enskog expansion of the nonlinear Boltzmann equation. For states far from equilibrium the local equilibrium time correlation functions are determined in the Boltzmann limit and a similar equivalence to the Boltzmann equation solution is established. Other formal representations of the fluxes are indicated; in particular, a projection operator form and its Boltzmann limit are discussed. As an example, the nonequilibrium correlation functions for steady shear flow are calculated exactly in the Boltzmann limit for Maxwell molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chapman and T. Cowling,Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, England, 1953).

    Google Scholar 

  2. J. A. McLennan, inAdvances in Chemical Physics, Vol. 5, I. Prigogine, ed. (Wiley, New York, 1963); R. Zwanzig,Ann. Rev. Phys. Chem. 16:67 (1965); D. Zubarev,Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, (1974).

    Google Scholar 

  3. M. H. Ernst,Physica 32:209 (1966).

    Google Scholar 

  4. R. J. Hardy,J. Math. Phys. 6:1749 (1964).

    Google Scholar 

  5. J. T. Bartis and I. Oppenheim,Phys. Rev. A 8:3174 (1973);10:1263 (1974).

    Google Scholar 

  6. R. B. Storer and H. S. Green,Phys. Fluids 5:1212 (1962); R. Zwanzig,Phys. Rev. 124:983 (1961); H. Haken,Rev. Mod. Phys. 47:61 (1975); B. Robertson,Phys. Rev. 144:151 (1966);Phys. Rev. 160:175 (1967); J. M. Richardson,J. Math. Anal. Appl. 1:12(1960).

    Google Scholar 

  7. K. Kawasaki and J. D. Gunton,Phys. Rev. A 8:2048 (1972); T. Yamada and K. Kawasaki,Prog. Theor. Phys. 38:1031 (1967); M. H. Ernst, B. Cichocki, J. R. Dorfman, J. Sharma, and H. van Beijeren,J. Stat. Phys. 18:237 (1978).

    Google Scholar 

  8. C. K. Wong, J. A. McLennan, M. Lindenfeld, and J. W. Dufty,J. Chem. Phys. 68:1563 (1978).

    Google Scholar 

  9. R. A. Piccirelli,Phys. Rev. 175:77 (1968).

    Google Scholar 

  10. M. Bixon, J. R. Dorfman, and K. Mo,Phys. Fluids 14:1049 (1971); M. H. Ernst,Am. J. Phys. 38:908(1970).

    Google Scholar 

  11. E. Ikenberry and C. Truesdell,J. Rat. Mech. Anal. 5:1, 55 (1956).

    Google Scholar 

  12. J. A. McLennan,Phys. Rev. A 8:1479 (1973).

    Google Scholar 

  13. J. R. Dorfman, inFundamental Problems in Statistical Mechanics, Vol. 3, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1975); P. Schofield, inSpecialist Reports-Statistical Mechanics (The Chemical Society, London, (1976), Vol. III.

    Google Scholar 

  14. J. W. Dufty,Phys. Rev. A 13:2299 (1976).

    Google Scholar 

  15. M. S. Green,J. Chem. Phys. 25:836 (1956);Physica 24:393 (1958).

    Google Scholar 

  16. E. G. D. Cohen,Physica 28:1025 (1962).

    Google Scholar 

  17. W. T. Ashurst and W. G. Hoover,Phys. Rev. A 11:658 (1975); T. Naitoh and S. Ono,Phys. Lett. A 57A:448 (1976).

    Google Scholar 

  18. C. Cercignani,Mathematical Methods in Kinetic Theory (Plenum Press, New York, 1969).

    Google Scholar 

  19. R. W. Zwanzig and R. D. Mountain,J. Chem. Phys. 43:4464 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by NSF grant PHY 76-21453.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufty, J.W., Lindenfeld, M.J. Nonlinear transport in the Boltzmann limit. J Stat Phys 20, 259–301 (1979). https://doi.org/10.1007/BF01011938

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011938

Key words

Navigation