Skip to main content
Log in

The hard-sphere fluid: New exact results with applications

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A theorem for convolution integrals is proved and then applied to extend the “second zero-separation theorem” to the bridge functionb(r) and direct-correlation tail functionsd(r). This theorem allows us to exactly relate∂b(r)/∂r and∂d(r)/∂ratr=0 for the hard-sphere fluid to the “contact value” of the radial distribution functiong(r) atr=σ +. From this we obtain immediately the exact values of ∂b(r)/∂r and ∂d(r)/∂r atr=0 through second order in number density ρ. Using our results to compare the exact and Percus-Yevick (PY) bridge function, we find that they differ significantly. After obtaining the bridge function and tail function and their derivatives atr=0 andr=σ through, we suggest new approximations forb(0) andd(0) as well as an analytical integral-equation theory to improve the PY approximation in the pure hard-sphere fluid. The major deficiency of that approximation has been its poor assessment of the cavity function inside the hard-core region. Our theory remedies this defect in a way that yields ay(r) that is self-consistent with respct to the virial and compressibility relations and also the two zero-separation relations involvingy(r) and its spatial derivative atr=0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Rosenfeld and N. W. Ashcroft,Phys. Rev. A 20:1208 (1979).

    Google Scholar 

  2. N. W. Rosenfeld,J. Stat. Phys. 42:437 (1986).

    Google Scholar 

  3. A. Malijevský and S. Labik,Mol. Phys. 60:663 (1987).

    Google Scholar 

  4. D. Henderson and E. W. Grundke,J. Chem. Phys. 63:601 (1975).

    Google Scholar 

  5. G. Giunta, C. Caccamo, and P. V. Giaquinta,Phys. Rev. A 31:2477 (1985); P. V. Giaquinta, G. Giunta, and G. Malescio,Phys. Rev. A 35:3564 (1987).

    Google Scholar 

  6. F. H. Ree, R. N. Keeler, and S. L. McCarty,J. Chem. Phys. 44:3407 (1966).

    Google Scholar 

  7. E. W. Grundke and D. Henderson,Mol. Phys. 24:269 (1972).

    Google Scholar 

  8. B. Barboy and R. Tenne,Mol. Phys. 31:1749 (1976).

    Google Scholar 

  9. R. Tenne, B. Barbay, S. Baer, and M. Silbert,Mol. Phys. 47:913 (1982).

    Google Scholar 

  10. G. Stell,Physica 29:517 (1963).

    Google Scholar 

  11. E. Waisman,Mol. Phys. 25:45 (1973).

    Google Scholar 

  12. D. Henderson, G. Stell, and E. Waisman,J. Chem. Phys. 62:4247 (1975).

    Google Scholar 

  13. M. S. Wertheim,Phys. Rev. Lett. 10:321 (1963); E. Thiele,J. Chem. Phys. 39:474 (1963).

    Google Scholar 

  14. E. Waisman and J. L. Lebowitz,Mol. Phys. 24:1013 (1972).

    Google Scholar 

  15. J. L. Lebowitz,Phys. Rev. 133:A895 (1964).

    Google Scholar 

  16. J. J. Erpenbeck and W. W. Wood,J. Stat. Phys. 35:321 (1984).

    Google Scholar 

  17. N. F. Carnahan and K. E. Starling,J. Chem. Phys. 51:639 (1969).

    Google Scholar 

  18. H. L. Friedman,A Course in Statistical Mechanics (Prentice-Hall, Englewood Cliffs, New Jersey, 1985).

    Google Scholar 

  19. J. S. Høye and G. Stell,Mol. Phys. 32:195 (1976).

    Google Scholar 

  20. J. Xu and G. Stell, unpublished work.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Stell, G. The hard-sphere fluid: New exact results with applications. J Stat Phys 52, 1389–1412 (1988). https://doi.org/10.1007/BF01011655

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011655

Key words

Navigation