Skip to main content
Log in

Approximate Gaussian representation of evolution equations I. Single degree of freedom nonlinear equations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We have developed a generalization of the method of statistical linearization to enable us to describe transient and other nonstationary phenomena obeying stochastic nonlinear differential equations. This approximation technique provides an optimal Gaussian representation with time-dependent parameters. The algorithm specifies a set of ordinary differential equations for the Gaussian parameters in terms of the time-dependent average nonlinearities. We apply the general formalism developed herein for single degree of freedom dissipative systems to a particular example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Schenzle and H. Brand, Multiplicative stochastic processes in statistical physics,Phys. Rev. A 20:1628–1647 (1979).

    Google Scholar 

  2. K. Lindenberg, K. E. Shuler, V. Seshadri, an B. J. West, inProbabilistic Analysis and Related Topics, A. T. Bharucha-reid, ed. (Academic Press, New York, 1983).

    Google Scholar 

  3. Z. Schuss,Theory and Applications of Stochastic Differential Equations (John Wiley, New York, 1980).

    Google Scholar 

  4. J. D. Mason, ed.,Stochastic Differential Equations and Applications. (Academic Press, New York, 1977).

    Google Scholar 

  5. R. C. Booton, The analysis of nonlinear control systems with random inputs,IRE Trans. Circuit Theory 1:32–34 (1954).

    Google Scholar 

  6. I. E. Kazakov, Approximate probabilistic analysis of the accuracy of performance of essentially nonlinear automatic systems.Automatika i Telemekanika 17:385–409 (1956).

    Google Scholar 

  7. T. K. Caughey, Equivalent linearization techniques.J. Acoust. Soc. Am. 35:1706–1711 (1963).

    Google Scholar 

  8. T. K. Caughey, inAdvances in Applied Mechanics Vol. 11, pp. 209–253. (Academic Press, New York, 1971).

    Google Scholar 

  9. S. H. Crandall, inProblems of the Asymptotic Theory of Nonlinear Oscillations, Mitropolsky Anniversary Volume, (Naukova Dumka, Kiev, 1977).

    Google Scholar 

  10. S. H. Crandall, Non-Gaussian closure for random vibration of non-linear oscillators.Int. J. Nonlinear Mech. 15:303–314 (1980).

    Google Scholar 

  11. A. B. Budgor, K. Lindenberg, and K. E. Shuler, Studies in non-linear stochastic processes. II. The Duffing oscillator revisited.J. Stat. Phys. 15:375–391 (1976).

    Google Scholar 

  12. W. D. Iwan and I-Min Yang, Application of statistical linearization techniques to nonlinear multidegree-of-freedom systems.J. Appl. Mech. 39:545–550 (1972).

    Google Scholar 

  13. W. D. Iwan, A generalization of the concept of equivalent linearization.Int. J. Nonlinear Mech. 8:279–287 (1973).

    Google Scholar 

  14. T. S. Atalik and S. Utku, Stochastic linearization of multidegree-of-freedom nonlinear systems.Earthquake Eng. Struct. Dyn. 4:411–420 (1976).

    Google Scholar 

  15. B. J. West, K. Lindenberg, and K. E. Schuler, Studies in nonlinear stochastic processes. IV. A comparison of statistical linearization, diagrammatic expansion, and projection operator methods.J. Stat. Phys. 18:217–233 (1978).

    Google Scholar 

  16. B. J. West, Statistical properties of water waves. I. Steady-state distribution of wind-driven gravity-capillary waves.J. Fluid Mech. 117:187–210 (1982).

    Google Scholar 

  17. F. de Pasquale, P. Tartaglia, and P. Tombesi, New expansion technique for the decay of an unstable state.Phys. Rev. A 25:466–471 (1982).

    Google Scholar 

  18. A. R. Bulsara, K. Lindenberg, and K. E. Shuler, Spectral analysis of a nonlinear oscillator driven by random and periodic forces. I. Linearized theory.J. Stat. Phys. 27:787–808 (1982).

    Google Scholar 

  19. E. Ben-Jacob, D. S. Bergman, and Z. Schuss, Thermal fluctuations and lifetime of the nonequilibrium steady state in a hysteretic Josephson junction.Phys. Rev. B 25:519–522 (1982).

    Google Scholar 

  20. J. O. Eaves and W. P. Rinehardt, Piecewise optimal linearization method for nonlinear stochastic differential equations.J. Stat. Phys. 25:127–141 (1981).

    Google Scholar 

  21. W. D. Iwan and A. B. Mason, Equivalent linearization for systems subjected to nonstationary random excitations.Int. J. Nonlinear Mech. 15:71–81 (1980).

    Google Scholar 

  22. M. Lax, Classical noise. III. Nonlinear Markoff processes.Rev. Mod. Phys. 38:359–566 (1966).

    Google Scholar 

  23. K. Lindenberg, B. J. West, and G. Rovner, in preparation.

  24. M. C. Valsakumar, K. P. N. Murthy, and G. Ananthakrishna,J. Stat. Phys. 30:617–631 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Defense Advanced Research Projects Agency DARPA-0053.

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, B.J., Rovner, G. & Lindenberg, K. Approximate Gaussian representation of evolution equations I. Single degree of freedom nonlinear equations. J Stat Phys 30, 633–648 (1983). https://doi.org/10.1007/BF01009681

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009681

Key words

Navigation