Skip to main content
Log in

Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Many two-dimensional spin models can be transformed into Coulomb-gas systems in which charges interact via logarithmic potentials. For some models, such as the eight-vertex model and the Ashkin-Teller model, the Coulomb-gas representation has added significantly to the insight in the phase transitions. For other models, notably theXY model and the clock models, the equivalence has been instrumental for almost our entire understanding of the critical behavior. Recently it was shown that theq-state Potts model and then-vector model are equivalent to a Coulomb gas with an asymmetry between positive and negative charges. Fieldlike operators in these spin models transform noninteger charges and magnetic monopoles. With the aid of exactly solved models the Coulombgas representation allows analytic calculation of some critical indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. P. Kadanoff,J. Phys. A 11:1399 (1978).

    Google Scholar 

  2. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6:1181 (1973); J. M. Kosterlitz,J. Phys. C 7:1046 (1974).

    Google Scholar 

  3. J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,Phys. Rev. B 16:12 (1977).

    Google Scholar 

  4. H. J. F. Knops,Phys. Rev. Lett. 39:766 (1977).

    Google Scholar 

  5. B. I. Halperin and D. R. Nelson,Phys. Rev. Lett. 41:121 (1978), andPhys. Rev. B 19:2457 (1979); A. P. Young,Phys. Rev. B 19:1855 (1979).

    Google Scholar 

  6. L. P. Kadanoff and A. C. Brown,Arm. Phys. (N.Y.) 121:318 (1979).

    Google Scholar 

  7. J. Ashkin and E. Teller,Phys. Rev. 64:178 (1943).

    Google Scholar 

  8. H. J. F. Knops,Ann. Phys. (N.Y.) 128:448 (1980).

    Google Scholar 

  9. H. J. F. Knops and L. W. J. den Ouden,Ann. Phys. (N.Y.) 138:155 (1982).

    Google Scholar 

  10. B. Nienhuis, E. K. Riedel, and M. Schick,Phys. Rev. B 27:5625 (1983).

    Google Scholar 

  11. R. B. Potts,Proc. Cambridge Phil Soc. 48:106 (1952).

    Google Scholar 

  12. B. Nienhuis,J. Phys. A 15:199 (1982).

    Google Scholar 

  13. M. P. M. den Nijs,Phys. Rev. B 27:1674 (1983).

    Google Scholar 

  14. H. E. Stanley,Phys. Rev. Lett. 20:589 (1968).

    Google Scholar 

  15. B. Nienhuis,Phys. Rev. Lett. 49:1062 (1982).

    Google Scholar 

  16. V. L. Pokrovsky and A. L. Talapov,Phys. Rev. Lett. 42:65 (1979).

    Google Scholar 

  17. N. D. Mermin and H. Wagner,Phys. Rev. Lett. 17:1133 (1966); N. D. Mermin,J. Math. Phys. 8:1061 (1967).

    Google Scholar 

  18. H. E. Stanley,Phys. Rev. Lett. 20:150 (1968).

    Google Scholar 

  19. J. Villain,J. Phys. (Paris) 36:581 (1975).

    Google Scholar 

  20. F. Rys,Heb. Phys. Acla 36:537 (1963).

    Google Scholar 

  21. E. H. Lieb,Phys. Rev. Lett. 18:1046 (1967).

    Google Scholar 

  22. E. H. Lieb and F. Y. Wu, inPhase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic Press, London, 1972), Vol. 1.

    Google Scholar 

  23. R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).

    Google Scholar 

  24. R. J. Baxter,Phys. Rev. Lett. 26:832 (1971).

    Google Scholar 

  25. H. van Beijeren,Phys. Rev. Lett. 38:993 (1977).

    Google Scholar 

  26. J. Ashkin and E. Teller,Phys. Rev. 64:178 (1943).

    Google Scholar 

  27. K. A. Kramers and G. H. Wannier,Phys. Rev. 60:252 (1941); F. Y. Wu and Y. K. Wang,J. Math. Phys. 17:439 (1976).

    Google Scholar 

  28. L. P. Kadanoff and F. Wegner,Phys. Rev. B 4:3989 (1971).

    Google Scholar 

  29. R. B. Potts,Proc. Cambridge Phil. Soc. 48:106 (1952).

    Google Scholar 

  30. H. N. V. Temperley and E. H. Lieb,Proc. R. Soc. London Ser. A 322:251 (1971).

    Google Scholar 

  31. R. J. Baxter, S. B. Kelland, and F. Y. Yu,J. Phys. A 9:397 (1976).

    Google Scholar 

  32. E. M. Fortuin and P. Kasteleyn,Physica 57:536 (1972).

    Google Scholar 

  33. R. J. Baxter,J. Phys. A 13:L61 (1980).

    Google Scholar 

  34. M. P. M. den Nijs,Physica 95A:449 (1979); B. Nienhuis, E. K. Riedel, and M. Schick,J. Phys. A 13:L31 (1980).

    Google Scholar 

  35. E. Domany, M. Schick, J. S. Walker, and R. B. Griffiths,Phys. Rev. B 18:2209 (1978); E. Domany and M. Schick,Phys. Rev. B 20:3828 (1979).

    Google Scholar 

  36. P. G. de Gennes,Phys. Lett. 38A:339 (1972).

    Google Scholar 

  37. E. Domany, D. Mukamel, B. Nienhuis, and A. Schwimmer,Nucl. Phys. B190 [FS3]:279 (1981).

    Google Scholar 

  38. R. J. Baxter,Phil. Trans. R. Soc. London 289:315 (1978).

    Google Scholar 

  39. P. J. Flory,Principles of Polymer Chemistry (Cornell University Press, New York, 1953).

    Google Scholar 

  40. J. des Cloizeaux,Phys. Rev. A 10:1665 (1974).

    Google Scholar 

  41. See for instance M. P. M. den Nijs,Phys. Rev. B 23:6111 (1981).

    Google Scholar 

  42. B. Nienhuis and L. P. Kadanoff, to be published.

  43. D. A. Huse,Phys. Rev. Lett. 49:1121 (1982); R. J. Baxter and P. A. Pearce,J. Phys. A 16:2239 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nienhuis, B. Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas. J Stat Phys 34, 731–761 (1984). https://doi.org/10.1007/BF01009437

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009437

Key words

Navigation