Skip to main content
Log in

Van hove self-correlation function of a hard-disk fluid: Enskog theory and computer simulation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The van Hove self-correlation function in a hard-disk fluid is analyzed using the Lorentz-Enskog kinetic equation and the kinetic model method of solution. Numerical convergence of the model solutions is demonstrated and accurate model results are used to interpret molecular dynamics simulation data at finite wave numbers. It is found that at about 60% of freezing density the error in the Enskog theory can be mainly attributed to an underestimate of the effective self-diffusion coefficient, but at 90% freezing density a theory which treats correlated collisions is needed to describe the width behavior of the singleparticle density fluctuation spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids (Academic Press, London, 1976); J-P. Boon and S. Yip,Molecular Hydrodynamics (McGraw-Hill, New York, 1980).

    Google Scholar 

  2. B. J. Alder and T. E. Wainwright,Phys. Rev. Lett. 18:988 (1967);J. Phys. Soc. Jpn. Suppl. 26:267 (1969);Phys. Rev. A 1:18 (1970); T. E. Wainwright, B. J. Alder, and D. M. Gass,Phys. Rev. A 4:233 (1971).

    Google Scholar 

  3. J. J. Erpenbeck and W. W. Wood,Phys. Rev. A 26:1648 (1982).

    Google Scholar 

  4. J. R. Dorfman and E. G. D. Cohen,Phys. Rev. Lett. 25:1257 (1970);Phys. Rev. A 6:726 (1972),12:292 (1975); M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen,Phys. Rev. Lett. 25:1254 (1970);Phys. Rev. A 4:2055 (1971). See also, J. R. Dorfman, inFundamental Problems in Statistical Mechanics, E. G. D. Cohen, ed. (North Holland, Amsterdam, 1975), Vol. 3, p. 277; J. R. Dorfman,Physica 106A:77 (1981).

    Google Scholar 

  5. Y. Pomeau and P. Resibois,Phys. Rep. 19:63 (1975).

    Google Scholar 

  6. E. Leutheusser, S. Yip, E. J. Alder, and W. E. Alley,J. Stat. Phys. 35:503 (1983).

    Google Scholar 

  7. E. P. Gross and E. A. Jackson,Phys. Fluids 2:432 (1959).

    Google Scholar 

  8. M. Nelkin and A. Ghatak,Phys. Rev. 135A:4 (1964).

    Google Scholar 

  9. S. Ranganathan and S. Yip,Physics 100A:127 (1980).

    Google Scholar 

  10. I. M. de Schepper, M. H. Ernst, and E. G. D. Cohen,J. Stat. Phys. 25:321 (1981).

    Google Scholar 

  11. D-P. Chou, Engineer's thesis, M.I.T. (1980).

  12. M. L. Prueitt, Computer Simulation of Molecular Dynamics, Los Alamos Scientific Laboratory Report LA-4696 (1971).

  13. B. J. Alder and T. E. Wainwright,J. Chem. Phys. 33:1439 (1960); W. G. Hoover and B. J. Alder,Ibid. 46:686 (1967).

    Google Scholar 

  14. B. J. Alder, D. M. Gass, and T. E. Wainwright,J. Chem. Phys. 53:3813 (1970).

    Google Scholar 

  15. L. Verlet and D. Levesque,Mol. Phys. 46:969 (1982).

    Google Scholar 

  16. M. Abramowitz and J. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leutheusser, E., Chou, D.P. & Yip, S. Van hove self-correlation function of a hard-disk fluid: Enskog theory and computer simulation. J Stat Phys 32, 523–538 (1983). https://doi.org/10.1007/BF01008953

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01008953

Key words

Navigation