Skip to main content
Log in

Semiclassical laser theory in the stochastic and thermodynamic frameworks

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The thermodynamic properties of the laser distribution in the steadily oscillating state are investigated to determine the minimum characteristic of the entropy production. First, the laser Langevin equation for five random variables is treated in the light of the stochastic calculus to deduce the photon-number rate equationn = − C+(n − nc) + [A/(1 + sn)](n−nA), where nn and n4 are the two constants of the fluctuation attributed to the noise forces subject to the usual fluctuation-dissipation theorem, withn 4 < 0 for the inverted atomic population. We then combine the dynamics of the lasing mode with a model open system of the Lebowitz type with two reservoirs for which the entropy productionσ(p) is expressed and made subject to a variational principle: The modified variation scheme, the same as Prigogine's local potential method, is shown to give the exact lasing distributionp as the optimum between two distributions of thermal type with temperatures far from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Haken, Laser Theory, inEncyclopedia of Physics, Vol. XXV/2c (New York, 1970).

  2. W. H. Louisell,Quantum Statistical Properties of Radiation (Wiley, New York, 1973).

    Google Scholar 

  3. M. Sargent, M. O. Scully, and W. E. Lamb,Laser Physics, Addison-Wesley, 1974.

  4. K. Hepp and E. H. Lieb,Helv. Phys. Acta 46:573 (1973); inLecture Notes in Physics, No. 38 (Springer Verlag, 1975), p. 178.

    Google Scholar 

  5. E. H. Lieb,Physica 73:226 (1974).

    Google Scholar 

  6. K. Hepp,Acta Physica Austriaca, Suppl. XI 1973:475; inLecture Notes in Physics, No. 39 (Springer Verlag, 1975), p. 138;Z. Phys. B 20:53 (1975).

  7. P. Glansdorff and I. Prigogine,Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley-Interscience, London, 1971).

    Google Scholar 

  8. R. Graham, inCoherence and Quantum Optics, L. Mandel and E, Wolf, eds. (Plenum Press, New York, 1973), p. 851; inSpringer Tracts in Modern Physics, No. 66 (1973).

    Google Scholar 

  9. K. Itô,Applied Math. Optimization 1:374 (1975); inLecture Notes in Physics, No. 39 (Springer Verlag, 1975), p. 218.

    Google Scholar 

  10. R. S. Ingarden and A. Kossakowski,Ann. Phys. (N.Y.) 89:451 (1975).

    Google Scholar 

  11. F. Haake,Springer Tracts in Modern Physics, No. 66 (1973).

  12. M. O. Scully and W. E. Lamb, Jr.,Phys. Rev. 159:208 (1967).

    Google Scholar 

  13. P. G. Bergmann and J. L. Lebowitz,Phys. Rev. 99:578 (1955).

    Google Scholar 

  14. J. L. Lebowitz,Phys. Rev. 114:1192 (1959);Phys. Rev. 128:1945 (1962).

    Google Scholar 

  15. H. Spohn,J. Math. Phys. 19:1277 (1978); H. Spohn and J. L. Lebowitz,Adv. Phys. Chem. (1979).

    Google Scholar 

  16. H. Hasegawa,Prog. Theor. Phys. 58:128 (1977).

    Google Scholar 

  17. I. Prigogine,Introduction to Thermodynamics of Irreversible Processes, 3rd ed. (Interscience, New York, 1967).

    Google Scholar 

  18. N. G. van Kampen,Adv. Chem. Phys. 34:245 (1976).

    Google Scholar 

  19. W. Horsthemke and L. Brenig,Z. Phys. B 27:341 (1977).

    Google Scholar 

  20. H. Statz and G. de Mars,Quantum Electronics, C. H. Towns, ed. (Columbia Univ. Press, New York, 1960), p. 530.

    Google Scholar 

  21. R. L. Stratonovich,Conditional Markov Processes and their Application to Optimal Control (Elsevier, New York, 1968).

    Google Scholar 

  22. E. Wong and M. Zakai,Ann. Math. Statistics 36:1560 (1965).

    Google Scholar 

  23. R. Kubo and N. Hashitsume,Prog. Theor. Phys. Suppl. 46:210 (1970).

    Google Scholar 

  24. R. Bonifacio, P. Schwendimann, and F. Haake,Phys. Rev. A 4:302 (1971).

    Google Scholar 

  25. E. Nelson,Dynamical Theory of Brownian Motion (Princeton Univ. Press, 1967).

  26. L. Onsager,Phys. Rev. 37:405 (1931).

    Google Scholar 

  27. P. Glansdorff and I. Prigogine,Physica 30:351 (1964).

    Google Scholar 

  28. I. Prigogine and P. Glansdorff,Physica 31:1242 (1965);Nonequilibrium Thermodynamics Variational Techniques and Stability (University of Chicago Press, Chicago, 1965).

    Google Scholar 

  29. M. Gronchi and L. A. Lugiato,Phys. Rev. A 13:830 (1976).

    Google Scholar 

  30. L. A. Lugiato,Physica 81A:565 (1975).

    Google Scholar 

  31. For a summary, see H. Hasegawa and T. Nakagomi,Suppl. Prog. Theor. Phys. 64:321 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, H., Nakagomi, T. Semiclassical laser theory in the stochastic and thermodynamic frameworks. J Stat Phys 21, 191–214 (1979). https://doi.org/10.1007/BF01008698

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01008698

Key words

Navigation