Skip to main content
Log in

A kinetic theory of spectral line shapes

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The methods of kinetic theory are used to describe the radiation from an atom immersed in a gas of perturbing particles. It is shown that the line shape can be expressed in terms of a one-particle distribution function. The appropriate BBGKY hierarchy of equations is derived. This hierarchy is then truncated by assuming that only two-body collisions are important. The resulting equations are solved to obtain a non-Markovian kinetic equation which describes the combined effects of Doppler and pressure broadening. When the Markovian assumption is applied, a generalized linear Boltzmann equation is obtained which describes the line shape in the region where the impact limit is valid and which also describes the phenomenon of collisional narrowing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Popielawski and S. A. Rice,J. Chem. Phys. 47:2292 (1967).

    Google Scholar 

  2. E. W. Smith and C. F. Hooper, Jr.,Phys. Rev. 157:126 (1967).

    Google Scholar 

  3. U. Fano,Phys. Rev. 131:259 (1963).

    Google Scholar 

  4. R. Zwanzig,J. Chem. Phys. 33:1338 (1960).

    Google Scholar 

  5. B. Bezzerides,Phys. Rev. 181:379 (1969).

    Google Scholar 

  6. N. N. Bogoliubov, inStudies in Statistical Mechanics, I. J. deBoer and G. E. Uhlenbeck, eds., North-Holland Publishing Co., Amsterdam (1962), Vol. I.

    Google Scholar 

  7. J. P. Wittke and R. H. Dicke,Phys. Rev. 103:620 (1956).

    Google Scholar 

  8. S. G. Rautian and I.I. Sobel'man,Soviet Phys.-JETP 9:701 (1967).

    Google Scholar 

  9. J. M. J. Van Leeuwen and S. Yip,Phys. Rev. 139:A1138 (1965).

    Google Scholar 

  10. J. P. Dougherty and D. T. Farley, Jr.,J. Geophys. Res. 68:5473 (1963).

    Google Scholar 

  11. E. G. Pestov and S. G. Rautian,Soviet Phys.-JETP 29:488 (1969).

    Google Scholar 

  12. E. W. Smith, J. Cooper, W. R. Chappell, and T. Dillon,J.Q.S.R.T., in publication.

  13. W. E. Brittin and W. R. Chappell,Rev. Mod. Phys. 34:620 (1962).

    Google Scholar 

  14. I. Prigogine,Non-Equilibrium Statistical Mechanics, Interscience Publishers, New York (1962).

    Google Scholar 

  15. E. W. Smith, C. R. Vidal, and J. Cooper,J. Res. Natl. Bur. Std. U.S. 73A:389, 405 (1969).

    Google Scholar 

  16. J. Weinstock,Phys. Rev. 132:454 (1963).

    Google Scholar 

  17. R. Balescu,Statistical Mechanics of Charged Particles, Interscience Publishers, New York (1963).

    Google Scholar 

  18. N. Rostoker,Phys. Fluids 7:479, 491 (1964).

    Google Scholar 

  19. K. Huang,Statistical Mechanics, John Wiley and Sons, New York, (1963), p. 132.

    Google Scholar 

  20. P. L. Bhatnagar, E. P. Gross, and M. Krook,Phys. Rev. 94:511 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by the Advanced Research Projects Agency of the Department of Defense, monitored by Army Research Office-Durham under Contract No. DA-31-124-ARO-D-139.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chappell, W.R., Cooper, J., Smith, E.W. et al. A kinetic theory of spectral line shapes. J Stat Phys 3, 401–410 (1971). https://doi.org/10.1007/BF01008278

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01008278

Key words

Navigation