Aczel, J. (1966).

*Lectures on Functional Equations and Their Applications*. Academic Press, New York.

Google ScholarBeinlich, I., Suermondt, H., Chavez, R., & Cooper, G. (1989). The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In

*Proceedings of the Second European Conference on Artificial Intelligence in Medicine* London: Springer Verlag, Berlin.

Google ScholarBuntine, W. (1991). Theory refinement on Bayesian networks. In*Proceedings of Seventh Conference on Uncertainty in Artificial Intelligence*, Los Angeles, CA, pages 52–60. Morgan Kaufmann.

Camerini, P. & Maffioli, L. F. F. (1980). The

*k* best spanning arborescences of a network.

*Networks* 10:91–110.

Google ScholarChickering, D. (1995a). A transformational characterization of equivalent Bayesian-network structures. In*Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence*, Montreal, QU, pages 87–98. Morgan Kaufmann.

Chickering, D. (March, 1995b). Search operators for learning equivalence classes of Bayesian- network structures. Technical Report R231, Cognitive Systems Laboratory, University of California, Los Angeles.

Google ScholarChickering, D., Geiger, D., & Heckerman, D. (1995). Learning Bayesian networks: Search methods and experimental results. In*Proceedings of Fifth Conference on Artificial Intelligence and Statistics*, Ft. Lauderdale, FL, pages 112–128. Society for Artificial Intelligence in Statistics.

Chow, C. & Liu, C. (1968). Approximating discrete probability distributions with dependence trees.

*IEEE Transactions on Information Theory* 14:462–467.

Google ScholarCooper, G. & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data.

*Machine Learning* 9:309–347.

Google ScholarCooper, G. & Herskovits, E. (January, 1991). A Bayesian method for the induction of probabilistic networks from data. Technical Report SMI-91-1, Section on Medical Informatics, Stanford University.

Dawid, A. & Lauritzen, S. (1993). Hyper Markov laws in the statistical analysis of decomposable graphical models.

*Annals of Statistics* 21:1272–1317.

Google Scholarde Finetti, B. (1937). La prévision: See lois logiques, ses sources subjectives.*Annales de l'Institut Henri Poincaré*, 7:1–68. Translated in Kyburg and Smokler, 1964.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm.

*Journal of the Royal Statistical Society*,

**B** 39:1–38.

Google ScholarDruzdzel, M. & Simon, H. (1993). Causality in Bayesian belief networks. In*Proceedings of Ninth Conference on Uncertainty in Artificial Intelligence*, Washington, DC, pages 3–11. Morgan Kaufmann.

Edmonds, J. (1967). Optimum brachching.

*J. Res. NBS* 71B:233–240.

Google ScholarEvans, J. & Minieka, E. (1991).

*Optimization algorithms for networks and graphs*. Marcel Dekker Inc., New York.

Google ScholarGabow, H. (1977). Siam journal of computing.

*Networks* 6:139–150.

Google ScholarGabow, H., Galil, Z., & Spencer, T. (1984). Efficient implementation of graph algorithms using contraction. In*Proceedings of FOCS*.

Geiger, D. & Heckerman, D. (1994). Learning Gaussian networks. In*Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence*, Seattle, WA, pages 235–243. Morgan Kaufmann.

Geiger, D. & Heckerman, D. (1995). A characterization of the Dirichlet distribution with application to learning Bayesian networks. In*Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence*, Montreal, QU, pages 196–207. Morgan Kaufmann.

Good, I. (1965).

*The Estimation of Probabilities*. MIT Press, Cambridge, MA.

Google ScholarHeckerman, D. (1995). A Bayesian approach for learning causal networks. In*Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence*, Montreal, QU, pages 285–295, Morgan Kaufmann.

Heckerman, D. & Geiger, D. (1995). Learning Bayesian networks: A unification for discrete and Gaussian domains. In*Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence*, Montreal, QU, pages 274–284. Morgan Kaufmann.

Heckerman, D., Geiger, D., & Chickering, D. (1994). Learning Bayesian networks: The combination of knowledge and statistical data. In*Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence*, Seattle, WA, pages 293–301. Morgan Kaufmann.

Heckerman, D. & Nathwani, B. (1992). An evaluation of the diagnostic accuracy of Pathfinder.

*Computers and Biomedical Research* 25:56–74.

Google ScholarHeckerman, D. & Shachter, R. (1995). A definition and graphical representation of causality. In*Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence*, Montreal, QU, pages 262–273. Morgan Kaufmann.

Höffgen, K. (revised 1993). Learning and robust learning of product distributions. Technical Report 464, Fachbereich Informatik, Universität Dortmund.

Horvitz, E. (1987). Reasoning about beliefs and actions under computational resource constraints. In

*Proceedings of the Third Workshop on Uncertainty in Artificial Intelligence* Seattle, WA, Association for Uncertainty in Artificial Intelligence, Mountain View, CA. Also in Kanal, L., Levitt, T., and Lemmer, J., editors,

*Uncertainty in Artificial Intelligence 3*, pages 301–324. North-Holland, New York, 1989.

Google ScholarHoward, R. (1988). Uncertainty about probability: A decision-analysis perspective.

*Risk Analysis* 8:91–98.

Google ScholarHoward, R. & Matheson, J. (1981). Influence diagrams. In Howard, R. and Matheson, J., editors,

*Readings on the Principles and Applications of Decision Analysis*, volume II, pages 721–762. Strategic Decisions Group, Menlo Park, CA.

Google ScholarJohnson (1985). How fast is local search? In*FOCS*, pages 39–42.

Karp, R. (1971). A simple derivation of Edmond's algorithm for optimal branchings.

*Networks* 1:265–272.

Google ScholarKorf, R. (1993). Linear-space best-first search.

*Artificial Intelligence* 62:41–78.

Google ScholarKullback, S. & Leibler, R. (1951). Information and sufficiency.

*Ann. Math. Statistics* 22:79–86.

Google ScholarKyburg, H. & Smokler, H. (1964).

*Studies in Subjective Probability*. Wiley and Sons, New York.

Google ScholarLam, W. & Bacchus, F. (1993). Using causal information and local measures to learn Bayesian networks. In*Proceedings of Ninth Conference on Uncertainty in Artificial Intelligence*, Washington, DC, pages 243–250. Morgan Kaufmann.

Lauritzen, S. (1982).

*Lectures on Contingency Tables*. University of Aalborg Press, Aalborg, Denmark.

Google ScholarMadigan, D. & Raftery, A. (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window.*Journal of the American Statistical Association*, 89.

Matzkevich, I. & Abramson, B. (1993). Deriving a minimal I-map of a belief network relative to a target ordering of its nodes. In*Proceedings of Ninth Conference on Uncertainty in Artificial Intelligence*, Washington, DC, pages 159–165. Morgan Kaufmann.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953).

*Journal of Chemical Physics* 21:1087–1092.

Google ScholarPearl, J. (1988).

*Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference*. Morgan Kaufmann, San Mateo, CA.

Google ScholarPearl, J. & Verma, T. (1991). A theory of inferred causation. In Allen, J., Fikes, R., and Sandewall, E., editors,

*Knowledge Representation and Reasoning: Proceedings of the Second International Conference* pages 441–452. Morgan Kaufmann, New York.

Google ScholarSpiegelhalter, D., Dawid, A., Lauritzen, S., & Cowell, R. (1993). Bayesian analysis in expert systems.

*Statistical Science*, 8:219–282.

Google ScholarSpiegelhalter, D. & Lauritzen, S. (1990). Sequential updating of conditional probabilities on directed graphical structures.

*Networks*, 20:579–605.

Google ScholarSpirtes, P., Glymour, C., & Scheines, R. (1993).

*Causation, Prediction, and Search*. Springer-Verlag, New York.

Google ScholarSpirtes, P. & Meek, C. (1995). Learning Bayesian networks with discrete variables from data. In*Proceedings of First International Conference on Knowledge Discovery and Data Mining*, Montreal, QU. Morgan Kaufmann.

Suzuki, J. (1993). A construction of Bayesian networks from databases based on an MDL scheme. In*Proceedings of Ninth Conference on Uncertainty in Artificial Intelligence*, Washington, DC, pages 266–273. Morgan Kaufmann.

Tarjan, R. (1977). Finding optimal branchings.

*Networks*, 7:25–35.

Google ScholarTitterington, D. (1976). Updating a diagnostic system using unconfirmed cases.

*Applied Statistics*, 25:238–247.

Google ScholarVerma, T. & Pearl, J. (1990). Equivalence and synthesis of causal models. In*Proceedings of Sixth Conference on Uncertainty in Artificial Intelligence*, Boston, MA, pages 220–227. Morgan Kaufmann.

Winkler, R. (1967). The assessment of prior distributions in Bayesian analysis.

*American Statistical Association Journal*, 62:776–800.

Google ScholarYork, J. (1992).

*Bayesian methods for the analysis of misclassified or incomplete multivariate discrete data*. PhD thesis. Department of Statistics, University of Washington, Seattle.

Google Scholar